Asteroseismic probing of low mass solar-like stars throughout their evolution with new techniques

COSPAR Conference 2022 - Athens

Martin Farnir - University of Warwick

 22^{nd} of June 2022

Introduction

Context

Large amount of data

Kepler (2009-2018)

PLATO (2026-...)

Credits: NASA

Credits: CNES

Several hundreds of thousands of pulsating stars! \Rightarrow Unique opportunity for seismology: precise t, M, and R Introduction Context

Take advantage of the data

https://github.com/Yuglut/WhoSGIAdpython

---- V (-) V | ---- / / V

#5.(+

Solar-like oscillation spectra

 $\begin{array}{l} {\color{black} \textbf{Smooth}}\\ \nu_{n,l} \simeq \left(n+\frac{l}{2}+\epsilon\right)\Delta\nu\\ {\color{black} \textbf{Tassoul}} \ (1980), \ {\color{black} \textbf{Gough}} \ (1986) \end{array}$

$$\delta \nu = \nu_{\rm obs} - \nu_{\rm smooth}$$

WhoSGIAd: Principle

WhoSGIAd - Whole Spectrum and Glitches Adjustment (Farnir et al. 2019,2020)

https://github.com/Yuglut/WhoSGIAd-python

Consider the frequencies vector space:

- ① Build orthonormal basis of functions (Gram-Schmidt);
 - From regular functions: $oldsymbol{p}_k$
 - Build orthonormal functions: $q_k = \frac{p_k \sum\limits_{j}^{k-1} \langle p_k | q_j \rangle q_j}{\left\| p_k \sum\limits_{j}^{k-1} \langle p_k | q_j \rangle q_j \right\|}$ • With the scalar product: $\langle \boldsymbol{x} | \boldsymbol{y} \rangle = \sum\limits_{i}^{N} \frac{x_i y_i}{\sigma_i^2}$

WhoSGIAd

Principle

WhoSGIAd: Principle

Martin Farnir

WhoSGIAd: Principle

3 Combine independent a_k into indicators as uncorrelated as possible;

•
$$\Delta_l = a_{l,1}R_{l,1,1}^{-1}$$
,
• $\hat{r}_{0l} = \frac{a_{0,0}R_{0,0,0}^{-1} - a_{l,0}R_{l,0,0}^{-1}}{a_{0,1}R_{0,1,1}^{-1}} + \overline{n_l} - \overline{n_0} + \frac{l}{2}$,
• $\Delta_{0l} = \frac{a_{l,1}R_{l,1,1}^{-1}}{a_{0,1}R_{0,1,1}^{-1}} - 1$,
• $A_{\text{He}} = \|\delta\boldsymbol{\nu}_{\text{He}}\| = \sqrt{\sum a_{\text{He}}^2}$,
• ...

with $R_{l,k,j}^{-1}$ the transformation matrix: $m{q}_{l,k} = \sum\limits_{j \leq k} R_{l,k,j}^{-1} m{p}_{l,j}$

Seismic indicators

Smooth:

- $\hat{r}_{0l} \rightarrow \text{Composition}$ and evolution (~ Roxburgh & Vorontsov 2003)
- $\Delta_{0l} \rightarrow \text{Overshooting}$ (See also Deheuvels et al. 2016)

Glitch:

Farnir et al. (2019) Independent of smooth indicators

Glitch:

Farnir et al. (2019) Independent of smooth indicators

Glitch:

Farnir et al. (2019) Independent of smooth indicators

Glitch:

Farnir et al. (2019) Independent of smooth indicators

WhoSGIAd Results

Application to 16 Cygni

Fitting only Δ , \hat{r}_{01} , \hat{r}_{02} , and A_{He} :

Seismology alone cannot discriminate models (Farnir et al. 2020 See also Bulden et al. 2021)

Sub- and red giants: Mixed-Modes

Pressure and **gravity** character \Rightarrow Probe the **whole** structure!

Credits: Grosjean (Thesis, 2015)

H-shell vs. core-He burning

(Montalbàn et al. 2010, Bedding et al.

2011)

Credits: Mosser et al. (2014) $\Delta \pi_1$: Period spacing

EGGMiMoSA

EGGMiMoSA:

Extracting Guesses about Giants via Mixed-Modes Spectrum Adjustment (Farnir et al. 2021)

Info on **mass, radius**, and **age**

- Two methods to probe most of the evolution of solar-like pulsators;
- Fast (< 1s per star) and automated;
- Robust indicators for stellar modelling;
- Well suited candidates for the analysis of the PLATO data.

https://github.com/Yuglut/WhoSGIAdpython

			/(,			
			,,#((
			, 88, / ((#,		
		,(#	+ ,(((#,		
	,	#°c# ,	, N.	.%,#,		
#2	vv##v#+	# &(۵,	+ #,		
,#%#(202.2	×.,	, %&	%/#.((#(((/	.,
/+,	(%,/	N#+	(%%	or		((#,,%,,
/##,	%/	\$(8.,	,%(+,		#δ ₄ (+,
#+,%%%#/,		200	6MM,#/	+.#%		.//
%%/%#6% ,	, vs#v. ,				*	((((##.
555#5.						./(#%(.
3+633	s					(.%(+.
#%//%%					,#/(#/,
8.55./3#8\					.%*.#.	
	#3/3	100			-55+	
		′\%	\$\$\$(νν.,.#		
				I		
/	- 1/	1.8	1-1	No b	(
!! ! .		114		1 1 1	-	\/_\
<u> - </u>	1.1-1				(-)	1/\
I	-1.	1-1	I - I - I -	1 _)	/	-/-/ \-\

Appendices

Convection Zone Glitches

Mixing processes badly constrained

0.450.40 \rightarrow Convection zone glitch : radiative -▷ 0.35 convective regions transition \Rightarrow Transition 0.30No Over Ad Over localisation Rad Over $0.25 \downarrow 0.68$ 0.720.690.70 0.710.73

 r/R_*

WhoSGIAd: Basis Elements

We selected the basis functions:

- Smooth
 - $\begin{array}{cccc} \textbf{1} & p_0(n) &= 1 \\ \textbf{2} & p_1(n) &= n \\ \textbf{3} & p_2(n) &= n^2 \end{array}$

WhoSGIAd: \hat{r}_{01}

WhoSGIAd

$$\hat{r}_{01} = \frac{\overline{\nu_0} - \overline{\nu_1}}{\Delta_0} + \overline{n_1} - \overline{n_0} + \frac{1}{2}$$

Roxburgh & Vorontsov (2003) $r_{01}(n) = \frac{\nu_{n-1,1} - 2\nu_{n,0} + \nu_{n,1}}{2(\nu_{n,1} - \nu_{n-1,1})}$

16 Cyg A : $\Delta \hat{r}_{01}/\hat{r}_{01} = 0.7\%$ $\Delta r_{01}(21)/r_{01}(21) = 2.9\%$ $(Z/X)_0 = 0.0218$ $\alpha_{\text{MLT}} = 1.82$ $Y_0 = 0.25$ $(Z/X)_0 = 0.018$ $\alpha_{\text{MLT}} = 1.5$ $Y_0 = 0.27$

WhoSGIAd: \hat{r}_{02}

WhoSGIAd

$$\hat{r}_{02} = \frac{\overline{\nu_0} - \overline{\nu_2}}{\Delta_0} + \overline{n_2} - \overline{n_0} + \frac{2}{2}$$

Roxburgh & Vorontsov (2003) $r_{02}(n) = \frac{\nu_{n,0} - \nu_{n-1,2}}{(\nu_{n,1} - \nu_{n-1,1})}$

16 Cyg A : $\Delta \hat{r}_{02}/\hat{r}_{02} = 0.6\%$ $\Delta r_{02}(21)/r_{02}(21) = 2.1\%$ $(Z/X)_0 = 0.0218$ $\alpha_{\text{MLT}} = 1.82$ $Y_0 = 0.25$ $(Z/X)_0 = 0.018$ $\alpha_{\text{MLT}} = 1.5$ $Y_0 = 0.27$

WhoSGIAd: Δ_{0l} & Overshooting

• \hat{r}_{01} : mean $r_{01}(n)$

• Δ_{01} : slope in n of $r_{01}(n)$

Credits: Deheuvels et al. 2016

- a_0 : mean $r_{01}(n)$
- a_1 : slope in n of $r_{01}(n)$

WhoSGIAd: ϵ and surface effects

WhoSGIAd: Helium and Γ_1 toy model

WhoSGIAd: Metallicity and Γ_1 toy model

WhoSGIAd: Application to the Kepler LEGACY sample

• Overshooting $\Delta \alpha_{ov}/\Delta M = 0.2 \pm 0.1,$ $\alpha_{ov,0} = -0.1 \pm 0.2$ • Galactic enrichment $\Delta Y/\Delta Z = 1.92 \pm 0.79$, $Y_p = 0.26 \pm 0.01$

Free param.: $t, M, X_0, (Z/X)_0$, and α_{ov} ; Seismic: Models with only Δ , \hat{r}_{01} , \hat{r}_{02} , Δ_{01} , and A_{He} ; Metal: Models with only Δ , \hat{r}_{01} , \hat{r}_{02} , Δ_{01} , and [Fe/H].

Mixed-modes

- Modes of mixed p and g character
- → pressure and gravity cavities coupled via evanescent region

Credits: Grosjean et al. (2014)

FGGMiMoSA: Formalism

EGGMiMoSA:

Extracting Guesses about Giants via Mixed-Modes Spectrum Adjustment (Farnir et al. 2021)

Asymptotic coupling between p- and g-cavity:

Mosser et al. (2015)

5 parameters L-M minimisation: $\Delta \nu$, $\Delta \pi_1$, ϵ_p , ϵ_q , q

No further simplifications \Rightarrow adapted to red and subgiants

EGGMiMoSA: Fit examples

$1.1 M_{\odot}$	$M \sim$	$[1.2M_\odot, 1.3M_\odot]$	$M \sim$
$2R_{\odot}$	$R \sim$	$2R_{\odot}$	$R \sim$
9.8	$\log t \sim$	9.5	$\log t \sim$

EGGMiMoSA: Fit examples

$M \sim$	$1.3 M_{\odot}$	$M \sim$	$1.9 M_{\odot}$
$R \sim$	$2.1R_{\odot}$	$R \sim$	$3R_{\odot}$
$\log t \sim$	9.7	$\log t \sim$	9

EGGMiMoSA: Fit examples

KIC11193681

$M \sim$	$1.5 M_{\odot}$
$R \sim$	$2.5R_{\odot}$
$\log t \sim$	9.5