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ABSTRACT

Context. In the context of an ever increasing amount of highly precise data, thanks to the numerous space-borne missions, came a
revolution in stellar physics. This data allowed asteroseismology to thrive and improve our general knowledge of stars. Important
results were obtained about giant stars owing to the presence of ‘mixed modes’ in their oscillation spectra. These modes carry
information about the whole stellar interior, enabling the comprehensive characterisation of their structure.
Aims. The current study is part of a series of papers that provide a technique to coherently and robustly analyse the mixed-modes
frequency spectra and characterise the stellar structure of stars on both the subgiant branch and red-giant branch (RGB). In this paper
we aim at defining seismic indicators, relevant of the stellar structure, as well as studying their evolution along a grid of models.
Methods. The proposed method, EGGMiMoSA, relies on the asymptotic description of mixed modes. It defines appropriate initial
guesses for the parameters of the asymptotic formulation and uses a Levenberg-Marquardt minimisation scheme in order to adjust the
complex mixed-modes pattern in a fast and robust way.
Results. We are able to follow the evolution of the mixed-modes parameters along a grid of models from the subgiant phase to the
RGB bump, therefore extending previous works. We show the impact of the stellar mass and composition on the evolution of these
parameters. We observe that the evolution of the period spacing ∆π1, pressure offset εp, gravity offset εg, and coupling factor q as a
function of the large frequency separation ∆ν is little affected by the chemical composition and that it follows two different regimes
depending on the evolutionary stage. On the subgiant branch, the stellar models display a moderate core-envelope density contrast.
Therefore, the evolution of ∆π1, εp, εg, and q significantly changes with the stellar mass. Furthermore, we demonstrate that, for a
given metallicity and with proper measurements of the period spacing ∆π1 and large frequency separation ∆ν, we may unambiguously
constrain the stellar mass, radius and age of a subgiant star. Conversely, as the star reaches the red-giant branch, the core-envelope
density contrast becomes very large. Consequently, the evolution of εp, εg and q as a function of ∆ν becomes independent of the stellar
mass. This is also true for ∆π1 in stars with masses .1.8 M� because of core electron degeneracy. This degeneracy in ∆π1 is lifted
for higher masses, again allowing for a precise measurement of the stellar age. Overall, our computations qualitatively agree with
previous observed and theoretical studies.
Conclusions. The method provides automated measurements of the adjusted parameters along a grid of models and opens the way
to the precise seismic characterisation of both subgiants and red giants. In the following papers of the series, we will explore further
refinements to the technique as well as its application to observed stars.
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1. Introduction

Red giant and subgiant stars constitute essential ingredients to
our understanding of the Universe. Indeed, such stars are very
bright and may therefore be observed at large distances and
in great numbers. Firstly, the determination of their proper-
ties is crucial to galactic archaeology, which is aimed at trac-
ing the structural and dynamical evolution of the Milky Way
(e.g., Miglio et al. 2017). Secondly, these stars are key targets
with regard to the precise characterisation of stellar structure
and evolution. In the recent decades, the data of unprecedented
quality collected by the CoRoT (Baglin et al. 2009) and Kepler
(Borucki et al. 2010) spacecrafts have enabled us to make a size-
able leap towards the characterisation of red giants and sub-
giants, thanks to the detection of mixed modes (Bedding et al.
2011). Even though their detection is recent, their theoretical
existence and detectability was predicted early on (Scuflaire
1974; Dupret et al. 2009). These modes exhibit a twofold nature:
they behave as pressure modes in the outermost regions of

the star, with the pressure gradient as the restoring force, and
as gravity modes in the innermost regions, with the buoyancy
being the restoring force. Both cavities are coupled through
an evanescent region, the properties of which determine the
coupling strength (e.g., Hekker & Christensen-Dalsgaard 2017).
These modes constitute a unique opportunity to probe the entire
stellar structure as they propagate from the surface to the core.
It is not the case in solar-type stars that exhibit pure pressure
modes, that propagate in an outer pressure cavity. Consequently,
it is only information about the outermost layers of these stars
that may be retrieved.

The coupling between gravity modes (g-modes) and pres-
sure modes (p-modes) leads to complex behaviours, that evolve
in tandem with the star. On the main sequence, a solar-like oscil-
lator presents a p-modes spectrum that displays significant reg-
ularity in frequency. At first order, oscillation modes of a given
spherical degree l are separated by a constant quantity, the large
separation ∆ν (Tassoul 1980; Gough 1986). The observed fre-
quency range is almost constant and lies around the frequency
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of maximum power, νmax. As the star evolves along the subgiant
branch, νmax decreases. At some point, the observed frequencies
of the p-modes become so small that they can couple with the
g-modes and create so-called mixed modes. This leads
to the phenomenon called avoided crossings (Osaki 1971;
Aizenman et al. 1977). This creates a bumping of the frequency
spacing of the modes, perturbing the apparent regularity of the
spectrum. Later on, during the red giant phase, as νmax continues
to decrease the frequency pattern is composed of a large number
of modes that behave, at leading order, as gravity modes with a
constant separation between successive mode periods, the period
spacing ∆π1 (Tassoul 1980). Again, because of the coupling
between p and g-modes, this regularity is disturbed and mode
bumping appears, the local period spacing between consecu-
tive modes decreases when encountering p-modes. Despite the
apparent complexity exhibited by mixed modes, several studies
have demonstrated that their frequency pattern can be described
via a limited number of parameters.

On the one hand, Deheuvels & Michel (2011) described
avoided crossings via a series of coupled harmonic oscillators,
mimicking the coupling between p- and g-modes. This approach
was later used by Benomar et al. (2012) who demonstrated on a
grid of subgiants that the coupling strength was predominantly
function of the mass. Furthermore, they noted that it should
increase right before the transition to the red giant phase. How-
ever, linking this approach to the stellar structure is not straight-
forward.

On the other hand, to exploit the physical knowledge we have
about the stellar structure, many authors rely on the asymptotic
description of mixed modes (Shibahashi 1979; Takata 2016),
which assumes that the oscillating modes are of a short wave-
length compared to the variations in the stellar structure (i.e.,
the modes radial order is large). In this formalism, the resonance
condition takes the following form

tan θp = q tan θg, (1)

where θp and θg are phase terms describing the propagation of
the modes in the pressure and gravity cavities, respectively, and q
is the coupling factor describing the level of interaction between
both cavities. In this general form, the analytical expressions of
these parameters directly depend on the stellar structure prop-
erties and the frequency. Based on observations, Mosser et al.
(2012b, 2015) proposed explicit formulations for both phases of
dipolar modes, which are the most observed:

θp = π
(
ν

∆ν
− εp

)
, (2)

θg = π

(
1

ν∆π1
− εg +

1
2

)
. (3)

We present here the gravity phase with an opposite sign for
the 1/2 term. Assuming in addition that q is independent of
the frequency, the asymptotic expression is then a function of 5
frequency-independent parameters (henceforth referred to as the
‘mixed-modes parameters’): the large separation ∆ν, the period
spacing ∆π1, the pressure offset εp, the gravity offset εg, and the
coupling factor q. Solving Eq. (1) for ν provides the theoreti-
cal asymptotic frequencies of the dipolar modes. Under the form
given by Eqs. (1)–(3), the asymptotic formulation has already
been shown to be a very powerful tool that allowed us to inter-
pret both observed and model data as functions of the stellar
structure.

Indeed, the asymptotic formulation has successfully been
applied to adjust observed data in several studies. For exam-
ple, Mosser et al. (2015) use the asymptotic formulation along
with a carefully defined variable such that it restores the regu-
larity in the oscillation spectrum and eases its adjustment, the
so-called period stretching. This technique was then used by
Vrard et al. (2016) and Mosser et al. (2017, 2018) to generate
an automated adjustment of a large sample of giant stars. These
studies provided an accurate measurement of ∆π1 and q in more
than 5000 stars. They were also able to measure εg in several
hundreds of red giant stars. In addition, the asymptotic formal-
ism was shown to be valid on the subgiant branch. For exam-
ple, Eqs. (1)–(3) were also fitted for about 40 stars observed by
Kepler for which we could measure the mixed-mode parameters
(Mosser et al. 2014; Appourchaux 2020).

In order to interpret the observed variations in these parame-
ters, numerous authors took interest in the mixed-modes oscil-
lation spectra from a theoretical point of view, most of them
using a grid-based approach. These studies provide invaluable
insight on the evolution of the mixed-modes parameters with
the stellar parameters. Namely, Jiang & Christensen-Dalsgaard
(2014), Hekker et al. (2018), and Jiang et al. (2020) provided
adjustments for q on theoretical frequency spectra computed
from red giant stellar models. These studies showed that the
decrease observed in the value of q during the evolution along
the red giant branch is correlated with the increase in the size
of the evanescent region. Pinçon et al. (2020) demonstrated by
means of analytical models that the thickening of this region on
the red giant branch actually results from its migration to the
radiative core towards the base of the convective envelope. This
fact also explains the variations observed in the measurement
of the gravity offset (Pinçon et al. 2019). Other studies demon-
strated the interest of the period spacing and large frequency sep-
aration as constraints to the stellar structure. Indeed, measuring
both ∆π1 and ∆ν allows us to distinguish between core helium
burning and hydrogen shell burning stages, which are otherwise
indistinguishable (Bedding et al. 2011; Mosser et al. 2014). This
is due to the fact that the core density greatly differs in these
stages, therefore impacting the value of ∆π1 (Montalbán et al.
2010). Also, by measuring the mass of the core in core helium
burning stars models, Montalbán et al. (2013) demonstrated the
possibility to constrain the convective overshooting in interme-
diate mass stars, the amount and nature of which greatly impacts
the central stellar composition as well as the duration of the main
sequence, directly influencing the inferred stellar age.

All the aforementioned works have demonstrated the high
potential of mixed modes to probe and characterise the prop-
erties of evolved stars. However, all the information carried by
seismic data still remains to be exploited in full. In particu-
lar, previous theoretical works mainly focused on the red giant
branch and on only one parameter at a time. It is thus necessary
to extend these works to the subgiant branch and to account for
all the mixed-mode parameters together in a robust and conve-
nient way. Consequently, the present paper is part of a series aim-
ing at providing a method to precisely adjust the mixed-modes
pattern of evolved solar-like stars, either extracted from observed
seismic data or predicted by a pulsation code, and to tightly con-
strain the stellar structure. We present in this paper the seismic
method we developed, namely: Extracting Guesses about Giants
via Mixed-Modes Spectrum Adjustment (EGGMiMoSA), which
relies on the asymptotic formulation (Eq. (1)). In this method, the
adjustment is performed thanks to the use of appropriate initial
estimations of the five parameters of the asymptotic formulation
and a Levenberg-Marquardt minimisation scheme. In the current
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Fig. 1. Oscillation frequency differences between consecutive modes as
a function of the period in the 1 M� subgiant model presented in Table 1.
The green horizontal line represents the large separation value calcu-
lated for radial modes. The double-sided arrow shows the approximate
asymptotic period spacing.

paper, the aim is to depict the evolution of the five mixed-mode
parameters across a grid of models of different masses and chem-
ical compositions, extending from the subgiant phase to the red-
giant phase. We insist that our goal is not to provide a detection
and identification of mixed modes but rather to asses the rele-
vance of the five mixed-modes parameters as probes of the stel-
lar structure. Therefore, we do not pretend to replace identifica-
tion methods of the likes of Mosser et al. (2015), as our method
should come as a secondary step to such techniques in order to
put constraints on stellar models.

This paper is structured as follows. We first present the
method and its fitting procedure in Sect. 2. In Sect. 3, we
demonstrate the ability of the technique to properly account for
mixed-mode spectra and display the evolution of the adjusted
parameters with stellar evolution, mass, and composition. This
is followed by a discussion in Sect. 4 and we present out the
conclusions in Sect. 5.

2. Method

In its current version, the EGGMiMoSA method relies on
the adapted asymptotic description of the mixed-modes pat-
tern given by Eqs. (1)–(3). The core element of the method is
the computation of educated initial guesses of the five mixed-
mode parameters, enabling a fast adjustment of a reference spec-
trum via a Levenberg-Marquardt minimisation algorithm. Before
describing the parameter estimation and the fitting procedure,
we first recall a few aspects relevant to the subgiant and red-
giant spectra. The generation of the models used for illustration
is detailed in Sect. 3.

2.1. Typical oscillation spectra

As a star evolves along the subgiant branch and then rises on the
red giant branch, the properties of its spectrum evolve as well. As
an illustration, we display the theoretical frequency and period
differences between consecutive modes for two typical 1 M�
solar subgiant and red giant stars in Figs. 1 and 2, respec-
tively. Their parameters are summarised in Table 1. The models
and their theoretical frequencies were computed with the CLES
evolution code and the LOSC pulsation code (Scuflaire et al.
2008a,b). First, on the subgiant branch, the oscillation spectrum
in Fig. 1 departs from a pure pressure behaviour, such as solar-
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Fig. 2. Oscillation period differences between consecutive modes as
a function of the frequency in the 1 M� red giant model presented in
Table 1. The green horizontal line represents the asymptotic period
spacing. The double-sided arrow shows the large separation value cal-
culated for radial modes.

Table 1. Parameters of the 1 M� models used to compute the frequen-
cies presented in Figs. 1 and 2.

Subgiant Red giant

N 0.16 29.85
log L/L� 0.35 1.39
log Teff 3.74 3.65

like stars display on the main sequence. Nonetheless, the spec-
trum still shows a majority of pressure-dominated (p-dominated)
modes and very few gravity-dominated (g-dominated) modes.
As a consequence, successive frequencies are almost evenly
spaced. However, the presence of g-dominated modes locally
decreases the frequency difference. This results in mode bump-
ing. Conversely, the oscillation spectrum for the red giant star
in Fig. 2 displays a greater number of g-dominated modes per
p-dominated modes. The modes periods (instead of frequencies)
are now predominantly evenly separated. Again, the presence of
p-dominated modes locally reduces the period difference, which
also corresponds to mode bumping.

To make the distinction between pressure and gravity dom-
inated spectra the g-dominated modes density has been conve-
niently defined in Mosser et al. (2015) as

N (νmax) =
∆ν

∆π1ν
2
max

, (4)

with νmax the frequency of maximum power in the power spec-
trum. This number represents the ratio of g-dominated modes
per p-dominated modes. A g-dominated spectrum will display an
N value greater than unity, while a p-dominated spectrum will
have a value lower than unity. For instance, the models plotted
in Figs. 1 and 2 have N(νmax) ≈ 0.16 and 30, respectively.

Moreover, in Fig. 1, we see that the maximum value of
the frequency difference in p-dominated spectra is close to the
large separation of radial modes, ∆ν0 (green horizontal line). We
also see that successive bumps are separated by approximately
one asymptotic period spacing (black arrow). We recall that the
asymptotic period spacing, ∆π1,as, is related to the integration of
the Brunt-Väisälä frequency, N, from the center to the base of
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Fig. 3. Cost function landscape in the neigbourhood of the known solu-
tion as a function of the parameters ∆ν and εp. The minimum of the χ2

landscape is represented by the white diamond and the fitted value by
the green cross.

the convection zone, rBCZ, by the expression

∆π1,as = 2π2
(∫ rBCZ

0

N
r

dr
)−1

, (5)

with r the distance from the center of the star. Conversely, in
Fig. 2, we see that the maximum value of the period difference
in g-dominated spectra is very close to the asymptotic period
spacing (green horizontal line), while the bumps are separated by
about the large frequency separation of the radial modes (black
arrow). Through an inspection of both figures, we therefore note
that we may retrieve estimations for both the large separation
and the period spacing directly from such plots.

2.2. Fitting the spectrum

In the present section, we describe the fitting procedure. In its
present version, the goal of the EGGMiMoSA method is to
find the values of the five frequency independent mixed-modes
parameters (∆ν, ∆π1, εp, εg, and q) in Eqs. (1)–(3) that provide
the best agreement between the reference and theoretical asymp-
totic frequencies. Subgiant and red giant stars are known to be
slow rotators (e.g., Deheuvels et al. 2014; Gehan et al. 2018), so
that rotation perturbs at first-order only the frequencies of the
prograde and retrograde modes. We focus on the m = 0 modes
in the present paper and thus do not include the contributions
of rotation. The adjustment is carried in the following steps: 1.
We estimate ∆ν and εp with WhoSGlAd. 2. We estimate the
g-dominated mode density. 3. We provide the initial estimates
for ∆π1, εg, and q. 4. We adjust frequency (p-dominated spec-
trum) or period (g-dominated) differences. 5. We adjust individ-
ual frequencies.

As the spectrum adjustment is to be carried via a Levenberg-
Marquardt algorithm, which is local, it is crucial to provide
proper initial estimates of the parameters. This is even more
important as strong correlations exist between the individual
parameters of the fit. Indeed, from Eqs. (2) and (3), we observe
tight correlations between ∆ν and εp and between ∆π1 and εg.
This is also illustrated in Figs. 3 and 4. Both figures show the
evolution of the χ2 cost function (measuring the squared dif-
ference between the reference and asymptotic frequencies) as a
function of two of the five fitted parameters (the three remaining
parameters are frozen at their final fitted values). We observe in
Fig. 3 (respectively Fig. 4) that ∆ν and εp (resp. ∆π1 and εg) show
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Fig. 4. Cost function landscape in the neigbourhood of the known solu-
tion as a function of the parameters ∆π1 and εg. The minimum of the χ2

landscape is represented by the white diamond and the fitted value by
the green cross.

an important correlation. In the most extreme case, because of
the large value of the pressure (resp. gravity) radial order, a small
deviation in the value of ∆ν (resp. ∆π1) leads to large differences
in εp (resp. εg). Furthermore, we observe steep χ2 discontinu-
ities. These are the consequence of an improper mode identifica-
tion caused by the incorrect ∆ν and εp values. Because of these
important correlations, which may impair the convergence of the
method, we took special care in devising the initial parameters
estimation. In order to provide a first glimpse of the efficiency of
the developed method, we represent in these figures the values
of the parameters fitted with EGGMiMoSA as green crosses and
the minima of the χ2 in the 2D landscape as white diamonds. We
see that they greatly match in both cases. We note nevertheless
that there is a slight difference, especially in Fig. 3, because both
figures constitute a restricted picture of the five-parameter space
and the minimum in this restricted space does not necessarily
constitute the global five-parameter minimum.

2.2.1. Estimating ∆ν and εp with WhoSGlAd

Since the first detections of solar-like oscillations in red giants
(e.g., Frandsen et al. 2002), it has been known that their spectra
always display several radial modes. These may be used in order
to estimate a priori the value of the mixed-modes large separa-
tion, ∆ν, and pressure offset, εp. To do so, we rely on the esti-
mate computed with the WhoSGlAd method (Farnir et al. 2019)
applied to radial modes. This ensures a robust, precise, and fast
estimation. This estimation corresponds to a least-squares linear
fit of the radial frequencies. We have already highlighted the fact
that in order to improve the stability of the method, we maintain
the value of ∆ν fixed at the first guess.

2.2.2. Estimating the g-dominated modes density

As the parameter estimation and subsequent steps depend on the
g-dominated mode density (Eq. (4)), we first need to provide an
estimate of this quantity. Nonetheless, as we aim at applying the
technique to observed spectra, we cannot assume that we will
have access to a measure of ∆π1. We thus provide in this section
a technique to recognise g-dominated spectra, p-dominated spec-
tra and intermediate cases. To do so, we take advantage of the
following second difference in frequencies:

δν2,i =
νi+1 − νi−1

∆ν
, (6)
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where the i index is an integer ordering the frequencies in
ascending values, and thus the periods in decreasing values.
We recall that the ∆ν value was previously retrieved via the
WhoSGlAd method on radial modes.

In the case of a mixed-mode oscillation spectrum, the sec-
ond difference is expected to take values between 0 and 2. In
a pressure-dominated spectrum, as the number of p-dominated
modes exceeds that of g-dominated modes, individual modes are
almost evenly spaced in frequency of one large separation. As a
consequence, the second difference takes a value between 1 and
2. Conversely, in a gravity dominated spectrum, the modes are
now almost evenly spaced in period of one period spacing. To
make the link with the second frequency difference, we can write
using νi = 1/Pi such that

δν2,i =
∆π1νi+1νi−1

∆ν
δP2,i , (7)

where δP2,i = (Pi−1 − Pi+1)/∆π1 is defined as the second period
difference. In Eq. (7), the first factor is smaller than N(ν j)−1,
which is much smaller than unity in g-dominated spectra, and
δP2,i = (Pi−1 − Pi+1)/∆π1 . 2. Consequently, the second fre-
quency difference now ranges between 0 and 1. Finally, if the
g-dominated modes density was exactly equal to 1, this would
mean that the spectrum would alternate between p-dominated
and g-dominated modes and the second difference would be
exactly equal to 1 as well. Therefore, using the second differ-
ence, we may easily distinguish the different types of spectra.
We will consider a spectrum with δν2,i > 1 everywhere as com-
pletely p-dominated; a spectrum with δν2,i < 1 everywhere as
completely g-dominated; and a spectrum for which the second
difference crosses the value of 1 as an intermediate case. We
provide in Appendix A a visual and mathematical justification
of the validity of these previous heuristic arguments.

2.2.3. ∆π1, εg and q initial estimation

We now present the estimation of the remaining three param-
eters. They are estimated according to the nature of the spec-
trum, that is: completely g-dominated, completely p-dominated
or intermediate.

g-dominated estimation (N � 1, δν2 < 1). In the g-
dominated case, the spectrum presents a majority of gravity
dominated modes. Also, the gravity dominated modes closest
to pure g-modes are located midway between two dips of the
period difference curve. As illustrated in Fig. 2, the maximum
of the local period spacing between consecutive modes, denoted
∆Pmax, provides a first proper estimate for ∆π1.

Next, we use the ζ function defined by Mosser et al. (2015)
to provide an initial value for the coupling factor q. This function
is defined as

ζ =

1 +
q
N

1
q2 cos2 θp + sin2 θp


−1

, (8)

such that dP
dn = ζ∆π1, with n = np − ng the mixed-mode radial

order. In the case of g-dominated spectra,N � 1, the θp phase is
almost constant between successive modes. Assuming in addi-
tion that the N(ν) function provided in Eq. (4) does not vary
between successive modes, ζ is thus almost constant, and we
may integrate the expression for two successive radial orders so
that we obtain ∆Pi ' ζ(νi)∆π1. We then use this relation to esti-
mate q. First, we define the ratio Z = ζmin/ζmax with ζmin and
ζmax corresponding, respectively, to the minimum (i.e., close to a

pure p-mode with θp = kπ, k ∈ N) and maximum (i.e., close to a
pure g-mode with θp = π/2 + kπ, k ∈ N) values of the ζ function.
From the analytical expressions of ζmin and ζmax, we can thus get
an expression of the coupling factor as a function of N and Z:

q =

[
(Z − 1)N +

√
(1 − Z)2N2 + 4Z

]
/2. (9)

Second, as ∆Pi ' ζ(νi)∆π1, we can estimate Z from the ratio of
the minimum and maximum values of the individual observed
period spacings. Note that, as we have a first estimate for ∆π1,
we also have an estimate of N . Therefore, according to Eq. (9),
we can obtain an estimate for the coupling factor.

In addition, having an estimate ofN and q, we can now com-
pute the ζ function for any frequency. This allows us in a final
step to correct by iteration the first estimated ∆π1 value using the
relation ∆π1 ' ∆Pmax/ζ(νmax), where νmax is the frequency at the
maximum value of the individual period spacings.

Finally, we note that, for g-dominated spectra, the gravity
offset will not be adjusted in the subsequent step as period dif-
ferences will be adjusted (Sect. 2.2.4). Therefore, we do not need
to provide an estimate for its value in the present step.

p-dominated estimation (N � 1, δν2 > 1). For pressure-
dominated spectra, the gravity-dominated modes correspond to
the dips in the frequency difference curve. In that case, both ∆π1
and εg are estimated through a linear fit of the identified gravity-
dominated modes. The slope of the fit corresponds to ∆π1 and
the intercept to εg.

As the approximation ∆Pi ' ζ(νi)∆π1 is only valid for
g-dominated spectra where N � 1, we need an alternative
to estimate the coupling factor in p-dominated spectra. For a
p-dominated spectrum, N � 1, we define the ζ′ function (see
Appendix B) to express the variation of frequency with the
mixed-mode radial order, n:

ζ′ =

1 +
qN

cos2 θg + q2 sin2 θg


−1

, (10)

such that dν
dn = ζ′∆ν. Because the θg function is almost constant

between two dips in p-dominated spectra where N � 1, ζ′ is
almost constant as well within the assumption that N is quasi
constant. We may thus integrate over n the previous expression
between two successive modes. This yields ∆νi ' ζ′ (νi) ∆ν,
where the dependency on individual frequencies is shown explic-
itly. Using Eq. (1), we can easily show that ζ′ = 1 − ζ.

Similarly to the g-dominated case, we define Z′ = ζ′max/ζ
′
min

where ζ′max is the maximum value of ζ′ obtained for θg = kπ, k ∈
N (i.e., close to a pure p-mode) and ζ′min is the minimum value
for θg = π/2 + kπ, k ∈ N (i.e., close to a pure g-mode). We thus
can get an analytical expression of q based on this ratio, that is,

q =

[(
1 − Z′

)
+

√
(Z′ − 1)2 + 4Z′N2

]
/
(
2NZ′

)
. (11)

Using the fact that ∆νi ' ζ
′ (νi) ∆ν, the maximum and min-

imum values of the ζ′ function can then be estimated with the
maximum and minimum values of the individual frequency dif-
ferences. This provides an estimate of Z′ that, combined with the
estimate of N from the estimate of ∆π1, provides an estimate of
q according to Eq. (11).

Intermediate case (N ∼ 1, δν2 ∼ 1). When we have com-
parable p-dominated and g-dominated modes densities, that is,
N ∼ 1, we cannot rely on the characteristic shape of the fre-
quency or period differences to estimate individual parameters.
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Nevertheless, we may use the transition in the spectrum where
δν2 ' 1 to carry this estimation. From Sect. 2.2.2, we know that
δν2,i ' 1 and δP2,i ' 1 at the transition, where we have the same
amount of p-dominated and g-dominated modes. As a conse-
quence, the first factor in the right-hand side of Eq. (6) is close
to unity and we may retrieve an estimate for ∆π1:

∆π1 '
∆ν

νt+1νt−1
. (12)

with t being the mode index closest to the transition, that is,
where δν2,t is the closest to unity.

The coupling factor, q, is then estimated on the part of the
spectrum being the most dominated by one character. If we note
νinf and νsup the lower and upper bounds of the considered fre-
quency range, this corresponds to the p-dominated part around
νsup if 1/N(νsup) > N(νinf) or the g-dominated part around νinf
if 1/N(νsup) < N(νinf). We then follow the usual previous pro-
cedure associated with the dominant character to estimate q.

2.2.4. Fitting differences

After providing proper estimates for the mixed-modes parame-
ters, we adjust the values of these parameters that allow us to
reproduce individual period spacings or frequency differences
between consecutive modes (according to the nature of the spec-
trum). By doing so, we cancel out the correlation with εg (resp.
εp), which remains fixed and will be adjusted in subsequent
steps. This differs from most techniques present in the liter-
ature as they directly adjust the individual frequencies (e.g.,
Mosser et al. 2012b; Hekker et al. 2018). Techniques that adjust
period differences also exist (Cunha et al. 2015, 2019), similarly
to what we propose, however, those are only valid for red giants,
which have a g-dominated spectrum (N � 1). The present study
therefore represents an extension of such works.

g-dominated spectrum. When the spectrum is dominated by
the contribution of g-dominated modes, we fit individual period
spacings. From Eq. (1), it is possible to find an expression for
individual period spacings:

∆Pi = Pi − Pi+1 =
(
∆ng + ∆ψi/π

)
∆π1, (13)

with ∆ng, the difference of gravity radial order between two suc-
cessive modes, ∆ψi = ψi − ψi+1 and ψi = arctan

(
tan θp,i/q

)
. The

i index in the θp,i term represents the value of θp evaluated at the
period of index i. The difference ∆ng takes either a value of 1
when two successive modes are g-dominated or 0 when encoun-
tering a p-dominated mode, resulting in a change of the pressure
radial order. In practice, we keep ∆ng = 1 to compute the the-
oretical period difference ∆Pi in a first step and then subtract
∆π1 to ∆Pi where its estimate is greater than unity, which is not
permitted. A further justification of the value of ∆ng is given
in Appendix C. The three remaining parameters (∆π1, εp and
q) may be adjusted to reproduce the reference individual period
spacings.

Second, having adjusted individual period spacings, we
may find a value of εg such that we minimise the differ-
ence between reference and fitted periods expressed with the
following function:

χ2 =

N∑
i=1

(Pi,ref − Pi,fit)2

σ2
i

, (14)

with N the number of modes to be adjusted and σi the uncertain-
ties on the period of each mode.

As there only remains one free parameter to be fitted, εg, min-
imising the distance between reference and theoretical periods
amounts to compute ∂χ2

∂εg
= 0. This yields an analytical expres-

sion for εg:

εg =

 N∑
i=1

Pi,ref

σ2
i

+

N∑
i=1

i−1∑
j=1

∆P j,fit

σ2
i

 1
∆π1

∑N
i=11/σ2

i

−
(
ng,1 − 1/2 + ψ1/π

)
, (15)

where ∆P j,fit represent individual period spacings from the pre-
vious step and ng,1 is the gravity radial order of the first mode in
the observed set. Because εg is defined modulo 1 and ng,1 is an
integer, its actual value does not impact εg.

p-dominated spectrum. In the case of a pressure dominated
spectrum, we proceed in a very similar fashion. First, to avoid the
correlation between ∆ν and εp, the individual frequency spacings
are adjusted. Their expressed as follows:

∆νi = νi+1 − νi =
(
∆np + ∆φi/π

)
∆ν, (16)

where ∆np is the difference of pressure radial order between two
successive modes and φi = arctan

(
q tan θg,i

)
. Similarly to the

g-dominated case, ∆np takes either a value of 1, for two succes-
sive p-dominated mixed-modes, or 0 when alternating between
p-dominated and g-dominated character.

Finally we get the following expression for εp, minimising
the difference between reference and asymptotic frequencies:

εp =

 N∑
i=1

νi,ref

σ2
i

−

N∑
i=1

i−1∑
j=1

∆ν j,fit

σ2
i

 1
∆ν

∑N
i=11/σ2

i

−
(
np,1 + φ1/π

)
, (17)

with np,1 the radial order of the first mode in the set. As εp is
defined modulo 1 and np,1 is an integer, its actual value is not
important. We note that, in this context, the σi now represent
uncertainties on the frequencies of each mode.

2.2.5. Fitting frequencies

Independently of the nature of the spectrum, a last Levenberg-
Marquardt minimisation step is carried to simultaneously adjust
the four parameters ∆π1, εp, εg, and q in such a way that the
individual theoretical frequencies, that are solutions of Eq. (1),
reproduce at best the reference frequencies. This last complete
adjustment further improves the agreement with the data and
also ensures the reduction the uncertainties on the parameters
of the adjustment. Before assessing the probing potential of the
individual parameters of the adjustment, we tested the ability of
the EGGMiMoSA method to retrieve parameters from frequen-
cies that were generated with the asymptotic formulation and
known parameters. The results were excellent and did not intro-
duce unwanted biases.

3. Seismic indicators

In this section we apply the above-described method to several
sequences of giant models and display the evolution of the indi-
vidual parameters to assess their probing potential as relevant
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Fig. 5. Position of the models presented in Figs. 6–8

proxies of the stellar structure and evolution. The models were
computed with the CLES evolution code (Scuflaire et al. 2008b)
as described in Farnir et al. (2019). The reference model has a
mass of 1 M�, with an initial hydrogen abundance of X0 = 0.72
and metal abundance of Z0 = 0.015. Oscillation modes are com-
puted using the LOSC oscillation code (Scuflaire et al. 2008a).
Therefore, the reference modes are not the solution of the asymp-
totic formulation. Regarding the frequency range considered
for each model, Mosser et al. (2012a) estimated that the extent
around νmax of the modes that are efficiently excited, therefore
observable, in red giant stars follow the simple relation 0.66ν0.88

max.
Typical observations from Appourchaux et al. (2012) for a sub-
giant star with νmax ∼ 1000 µHz show that a little more than ten
radial modes may be clearly identified. Therefore, to match such
observed ranges and ensure computing a sufficient amount of
modes, we chose a slightly broader range of about νmax±0.4ν0.88

max.
This corresponds, for red giants (resp. subgiants) to approxi-
mately three (resp. 5) p-dominated modes on both sides of νmax,
as expected from the observations.

3.1. Individual spectra

In the present section we display adjusted oscillation spectra of
models typical of the Sun (1 M�, X0 = 0.72 and Z0 = 0.015)
at different stages of evolution: at the beginning of the sub-
giant phase (subsequently referred to as ‘Sub’), at the transition
between subgiant and red giant phases (‘Tran’) and at the tip
of the red giant branch, before the luminosity bump (‘RGB’).
These spectra are represented as frequency or period differences
(resp. for pressure or gravity dominated spectra) as a function of
the frequency. Those stages are represented in a HR diagram in
Fig. 5 and correspond toN values of respectively 0.16, 0.98, and
29.85. Figures 6–8 compare the reference spectra obtained with
LOSC (in blue) with the fitted spectra (in orange). To produce
these results, the adjustment was undertaken in an automated
fashion following the methodology described in Sect. 2.

Early subgiant. Figure 6 corresponds to an early subgiant
model (marked ‘Sub’ in Fig. 5), the first one on the sequence
displaying two local minima in the individual period spacing,
corresponding to mixed modes. This is the much lower thresh-
old of applicability with regard to the EGGMiMoSA technique.
Nonetheless, we observe that it is very efficient at providing a
qualitative adjustment of the data. Both the shape and position
of individual bumps are properly accounted for. However, we
note a slight offset in the bump height around a frequency of
1000 µHz. This offset is similar in amplitude to the error made
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Fig. 6. Fitted frequency differences as a function of frequency for an
early 1 M� subgiant model, denoted ‘Sub’ in Fig. 5.
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Fig. 7. Fitted frequency differences as a function of frequency for a 1 M�
model with similar numbers of p-dominated and g-dominated modes. It
is denoted ‘Tran’ in Fig. 5.

by assuming the large separation of radial modes to be con-
stant even though it presents a slight dependency with the fre-
quency. This is illustrated by the dashed red line, corresponding
to the constant estimate of the large separation of radial modes
obtained with WhoSGlAd (Farnir et al. 2019), compared to the
local value in green. We observe that the offset between the green
and red curves is similar to that between the blue and orange
ones.

Late subgiant. We represent a model presenting a compara-
ble amount of pressure dominated modes and gravity dominated
ones in Fig. 7 (marked ‘Tran’ in Fig. 5). It corresponds toN ' 1.
Although the shape of the spectrum is complex, we find a proper
fit to the data. This is possible thanks to the proper estimation of
the parameters beforehand.

Evolved red giant. For the more evolved star displayed in
Fig. 8, we again observe a very good agreement with the data.
However, we note a slight shift in the position of dips towards
low frequencies. Furthermore, we also observe that the adjusted
dips tend to be shallower than the data suggests. Possible reasons
for such discrepancies will be discussed in Sects. 4.3 and 4.4.

3.2. Variation with mass along the evolution

We present in the current section the variation of the parameters
of the adjustment with stellar evolution and mass. The models
were computed from the beginning of the subgiant phase up to
the RGB-bump. The results are displayed in Figs. 9 through 17.
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Fig. 8. Fitted individual period spacings as a function of frequency for
a late 1 M� red giant model. It is denoted ‘RGB’ in Fig. 5.

To ease the comparison with other works, stellar evolution goes
from right to left.

3.2.1. Period spacing, ∆π1

Figure 9 represents the evolution of the period spacing as a func-
tion of the large separation of radial modes which decreases with
evolution. The large separation is indeed a proxy of the mean
density (Ulrich 1986; Farnir et al. 2019) which decreases with
evolution during the subgiant and red giant phases. We represent
tracks for stellar masses in the range [1.0 M�, 2.1 M�] (0.1 M�
step) in different colours. We represent the transition between
subgiant and red giant phases (at N = 1) by dotted lines. We
thus observe that the period spacing decreases with the evolu-
tion, at different rates according to the evolutionary phase, the
decrease on the subgiant phase being the steepest.

We first note that our computations in Fig. 9 qualitatively
agree with the observations of Mosser et al. (2014, see Fig. 1).
This confirms that subgiant and red-giant stars occupy distinct
regions in a seismic HR diagram. We also note an excellent
agreement between the fitted period spacing and its asymptotic
value, ∆π1,as, represented by dashed lines (see also Lagarde et al.
2016). Assessing the normalised difference between the fitted
and asymptotic values of the large separation, given by δ∆π1 =
|∆π1,fit−∆π1,as|

∆π1,as
, we observe that it never exceeds 0.2% on the red-

giant phase. On the subgiant phase, this difference is greater and
decreases as the star evolves. It is below 10−15% at the begin-
ning of the subgiant phase and quickly drops below 5−10%. This
demonstrates that as ng increases, the validity of the asymp-
totic analysis improves. Finally, only a few models exceed the
15% disagreement and they correspond to models with only two
g-dominated modes, which stands as the very limit of applica-
bility of our technique. This suggests that the adjusted value is a
valid proxy of the asymptotic one. This agreement demonstrates
that, although the asymptotic approximation is questionable for
g-dominated modes in the subgiant phase (the number of nodes
of the g-dominated mode eigenfunction in the buoyancy cavity
is ng ∼ 3 in an early subgiant, and its wavelength is thus large), it
globally yields valid results. Using the asymptotic expression in
Eq. (5), we can crudely estimate that ∆π1 is about inversely pro-
portional to the maximum of the Brunt-Väisälä frequency in the
radiative region, which was shown by Pinçon et al. (2020) to be
approximately proportional to the square root of the helium core
density. The evolution of the helium core density as a function of
its mass is plotted in Fig. 10 for different stellar masses. During
these stages, the helium core mass increases as ∆ν decreases. We
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Fig. 9. Variation of ∆π1 with ∆ν0 for different masses, depicted by the
colours. The dashed lines correspond to the asymptotic value. The dot-
ted vertical lines correspond to the transition between subgiant and red-
giant phases.
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Fig. 10. Evolution of the helium core density as a function of its mass.
The colours and different line styles have the same indications as in
Fig. 9.

can thus see that the helium core density progressively increases
during evolution, leading to the global decrease in the period
spacing, as expected.

We further note that the subgiant tracks in Fig. 9, correspond-
ing to different masses, are separated to a significant extent. This
trend with the stellar mass can again be explained by the depen-
dence of the helium core density on the stellar mass during the
subgiant branch as illustrated in Fig. 10. We see in Fig. 9 that the
∆π1 separation between successive tracks is much larger than the
typical observed relative uncertainties from Appourchaux (2020),
which are smaller than 1% in most cases. This demonstrates that
the measure of both ∆ν0 and ∆π1 should allow us to infer the mass
of an observed star with a precision much better than 0.1 M�.
Consequently, because the age of a subgiant star is dominated by
the duration of the main sequence phase, which is a function of
the mass, we may in turn constrain the stellar age. This holds great
promises for the accurate characterisation of stellar populations.
To further demonstrate that the age of a subgiant may indeed be
constrained by the measure of ∆ν0 and ∆π1, we display in Fig. 11,
the evolution of the asymptotic period spacing, ∆πas, with ∆ν0
along the subgiant phase. The colour gradient corresponds to the
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masses. The colour gradient represents the age. The black symbols cor-
respond the models at fixed radius. The diamonds correspond to models
of 2R�, pentagons to 3R�, and stars to 4R�.

stellar age. We observe that individual tracks indeed represent
distinct ages. We also show iso-radius values with the black sym-
bols. Models with 2R� are symbolised by a diamond, models with
3R� by a pentagon and those with 4R� by a star. We observe that
measuring both ∆π1 and ∆ν0 allows us to position a star on this
diagram and to constrain its mass, radius and age at a given metal-
licity. Nevertheless, assuming the duration of the main sequence
to be mainly a function of the stellar mass only holds when there
is no overshooting during this phase, as is the case for solar-
like stars. However, stars with a mass greater than ∼1.2 M� have
a convective core, and the overshooting may therefore impact
the inferred age. For example, Noll et al. (2021) demonstrated
in the specific case of the KIC10273246 subgiant that models
with a finite amount of overshooting are in better agreement with
observed data that models without overshooting. Including the
effect of overshooting will thus be mandatory in more quantita-
tive studies that will follow the preliminary exploratory work pre-
sented here.

In red giants with masses .1.8 M�, we see in Fig. 9 that
the evolution of ∆π1 as a function of ∆ν converges to a degen-
erate track. This degeneracy is actually the result of the elec-
tron degeneracy in the helium core at these low masses. In these
evolved stars, the density contrast between the core and the enve-
lope is such that the mass of the envelope is negligible compared
to that of the core. Therefore, we may show by homology that
the properties of the shell are determined by the mass and radius
of the helium core (Refsdal & Weigert 1970; Kippenhahn et al.
2012). Furthermore, because of the central electron degeneracy,
the mass and radius of the core are related and the density of
the core is a function of the core mass only. As a consequence,
the evolution of the helium core density, in these stars with a
degenerate core, should be independent of the total stellar mass
and vary only with the mass of the helium core. In particular,
this is what we observe in Fig. 10. The low-mass tracks indeed
converge to an identical evolution once the transition to the red-
giant phase, represented by the dotted vertical lines, has been
crossed. The consequence of this relation between the core mass
and radius is that the properties of the shell are solely determined
by the mass of the helium core. The temperature and luminos-
ity of the shell, which, in turn determine the total luminosity, are
then only a function of the mass of the core. As the effective tem-
perature is almost constant on the red-giant branch, the stellar
radius thus also predominantly depends on the mass of the core.
This is also true for the mean density, ρ, as it is predominantly
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Fig. 12. Evolution of the ratio of the central density to the mean stellar
density as a function the large separation of radial modes. The colours
represent different total stellar masses, as in Fig. 9.

a function of the stellar radius. Consequently, the same goes for
the large frequency separation ∆ν that is a proxy of the mean
density. This results in a helium core density and a density con-
trast ρc/ρ, with ρc the central density, which only depend on the
mass of the helium core. These quantities are therefore degen-
erate as well as a function of the stellar mass for low mass
stars with a degenerate core. This is indeed what we observe in
Figs. 10 and 12. The consequence of this degeneracy in the core
helium density as a function of ∆ν is the degeneracy in period
spacing observed in Fig. 9. Finally, as the degeneracy is lifted in
red-giant stars with masses &1.8 M�, it is theoretically possible
to constrain the mass, radius and age of these stars by measuring
∆ν0 and ∆π1, similarly to the case of the subgiants. However, in
practice, it might not be possible to observe such stars as they
evolve fast.

3.2.2. Pressure offset, εp

Figure 13 shows the evolution of the pressure offset as a func-
tion of N , which increases with evolution. From now on, we
restrict the sample of masses to a sub-sample (1.0, 1.2, 1.5 and
1.8 M�) for better clarity. The same trend is followed by models
with masses above 1.8 M�. The first striking feature is that there
exist two regimes, depending on the evolution stage. During the
subgiant phase, we observe that εp mostly displays an increas-
ing trend, of which the slope as a function of N increases with
mass. This increase is followed by a steady decrease along the
red giant phase with a slope that is independent of the mass. This
is in qualitative agreement with the measured evolution from
(Mosser et al. 2013, Fig. 7). We note that their measurements are
shifted up by 0.5. This is to be expected as they consider radial
modes while we consider l = 1 dipolar modes, which introduces
a shift of l/2.

We further investigate the two apparent regimes in the evolu-
tion of the pressure offset. As it represents the phase lag induced
at the boundaries of the pressure cavities, we expect its behaviour
to be influenced by their properties. As a consequence, we dis-
play in Fig. 14 the density contrast compared to the inner sphere
at the lower boundary of the pressure cavity, corresponding to
the outer edge of the evanescent region. The local density con-
trast is defined in Takata (2016) by:

J(r) = 1 − ρ (r) /ρ̄ (r) , (18)

which compares the local density ρ and local mean density
ρ̄(r) =

m(r)
4/3πr3 , with m(r) the mass encapsulated by the sphere
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Fig. 13. Variation of εp as a function of N . The dashed line correspond
to the value estimated with WhoSGlAd on the radial modes.

of radius r. As an example, a value of J = 0.7 means the
inner sphere is in average three times denser than the local layer
whereas a value of J = 0.9 means the inner sphere is, on aver-
age, ten times denser. As the density contrast compared to the
inner sphere tends to zero, J tends towards unity. We observe that
the density contrast at the outer edge of the evanescent region,
r2, is moderate and strongly varies with the mass in the sub-
giant phase. Then, all the tracks converge towards a similar and
high density contrast during the red giant phase (i.e., J ∼ 0.9).
This matches the observations for the pressure offset, indicat-
ing that the pressure offset holds an information about the den-
sity contrast and the structure in the evanescent region. Indeed,
Pinçon et al. (2020) showed that the structure of the intermedi-
ate evanescent region behaves as power laws of the radius when
the density contrast between the core and the evanescent region
is large, independently of the stellar mass. This also goes for the
Brunt-Väisälä and Lamb frequencies, In contrast, the structure
deviates from such a configuration for lower core-envelope den-
sity contrast as observed in subgiant stars (see also discussion in
Sect. 3.2.4). This suggests that the evolution of the core-envelope
density contrast between the subgiant and the red giant branches
is the main responsible for the different regimes observed in the
pressure offset.

In Fig. 13, during the red giant phase, we observe disconti-
nuities, that result in a seesaw behaviour. This is a direct conse-
quence of the set of modes considered and does not question the
quality of the adjustment. Indeed, for such an extended evolu-
tion, we may not consider a fixed set of modes, that is, of fixed
radial orders. As a consequence, the set shifts towards lower
pressure modes orders and discontinuities in the evolution are
representative of this shift. Such an effect is discussed in more
details in Sect. 4.1.

In this figure, we also represent (as dashed lines) the εp,0
value retrieved for the radial modes via WhoSGlAd. The dis-
played values account for the l/2 shift in value compared with
dipolar modes. We observe that the trends of radial and dipo-
lar modes are in excellent agreement, with a slight offset for the
most evolved stars. This illustrates that it is a proper estimate for
the pressure offset of the dipolar mixed modes. The seesawing of
the radial value of εp further demonstrates that this is not caused
by any improper convergence of the technique.

In addition, we note that the behaviour is rather erratic dur-
ing the subgiant phase. This may be a direct consequence of the
need to include higher order contributions to the pressure phase,
θp, because of the extended set of modes. This aspect is further
discussed in Sect. 4.4.
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Fig. 14. Variation of the density contrast compared to the inner encap-
sulated sphere at the outer edge of the evanescent region, r2, as in Fig. 9.

3.2.3. Gravity offset, εg

Figure 15 represents the evolution of εg with νmax (to ease the
comparison with Pinçon et al. 2019, Fig. 4). This is, to our
knowledge, the first representation of the gravity offset on a grid
of models from the subgiant phase to the red giant phase. As
for the case of the pressure offset, we observe two regimes, each
depending on the evolutionary phase. We expect that this also
stems from the qualitative difference in the evolution of the den-
sity contrast in the evanescent region.

On the red giant branch, when comparing our results with
Fig. 4 of Pinçon et al. (2019) (which confronts their asymptotic
computations with observations from Mosser et al. 2018) the
agreement is convincing. We must bear in mind that we include
an additional 1/2 term in the θg phase compared to their study.
As a consequence, the values of εg we measure will be shifted up
of that same factor compared to theirs. Indeed, in the red giant
phase, we observe a plateau at a value of approximately 0.75 of
the gravity offset. Accounting for the shift in values of 0.5, this
is in excellent agreement with their observation of a plateau at
an approximate value of 0.25. This plateau is then followed by
a sudden drop of the gravity offset happening in the range of
νmax ∈

[
50 µHz, 110 µHz

]
.

The constant value of the gravity offset during the first part
of the red giant branch comes from the fact that, as mentioned
earlier, the profiles of the Brunt-Väisälä and Lamb frequencies
may be assumed to be parallel and represented by a power-law of
radius in the evanescent region because of the high density con-
trast between the core and the surface. The slope of the Brunt-
Väisälä frequency is then constant and determines the gravity
offset value. As the star evolves, νmax decreases along with the
set of excited modes. Therefore, the evanescent region moves
outwards, up to the point where it penetrates the convective
zone. The Brunt-Väisälä frequency then suddenly drops. Both
frequencies can no longer be considered parallel to one another.
The gravity offset then drops, as observed in Fig. 15 and pre-
dicted by Pinçon et al. (2019).

In the subgiant phase, we first note that the evolution of
εg depends on the stellar mass. Similarly to the pressure off-
set, we expect this dependence to stem from the low and mass-
dependent density contrasts displayed by these stars in the
evanescent region (see Fig. 14), in opposition to the high and
almost mass-independent density contrasts in red giant stars.
We also note that the behaviour is less regular than in the red
giant phase. However, individual spectra are properly adjusted,
as illustrated in Fig. 6 for the most extreme case. We thus
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Fig. 15. Variation of εg as a function of νmax for different masses.
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Fig. 16. Variation of q as a function of N for different masses.

expect this effect to either results from structural features or the
necessity to extend the asymptotic formulation to higher orders.
Another feature in the subgiant phase is the apparent oscillation
for low-mass stars, which should be caused by variations in the
evanescent region.

Finally, similarly to the case of the pressure offset, we note a
seesaw behaviour. This is again a consequence of the varying set
of modes. This will be addressed in the discussion (Sect. 4.1).

3.2.4. Coupling factor, q

The evolution of the coupling factor is displayed in Fig. 16. We
see that the value of q first increases to a high value in the sub-
giant phase. This corresponds to the case of a strong coupling
(Takata 2016). To be complete, we also note that, for the low-
est masses (1.0 M� and 1.2 M�), there is a local minimum of the
coupling factor before the sharp increase at the end of the sub-
giant phase. Then it suddenly drops before the red giant phase.
Finally, during the red giant phase, the coupling factor steadily
decreases from a value of about 0.25 to approximately 0.10, cor-
responding this time to a weak coupling. Eventually, the value of
q further drops by the end of the RGB phase. As our sequences
stop at the RGB bump, this drop is not visible for all of them.

This predicted evolution of the coupling factor is very simi-
lar to observations made by Mosser et al. (2017, namely Fig. 6).
As demonstrated by Pinçon et al. (2020) under the assumption
that the Brunt-Väisälä frequency and the Lamb frequency are
log-parallel, the coupling strength should be a proxy of the
width of the evanescent zone; thus the larger the evanescent
zone, the lower the coupling. To check whether the width of
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Fig. 17. Variation of width of the evanescent zone as a function of N
for different masses.

the evanescent region is correlated with the coupling factor, we
display in Fig. 17 the evolution of this relative width at νmax,
denoted δev, as a function of the g-dominated modes density. It
is defined as:

δev =
r2 − r1

(r1 + r2) /2
, (19)

with r1 and r2 the positions of the inner and outer edges of
the evanescent region (respectively). For all masses, we indeed
observe a global rapid decrease in the size of the evanescent zone
during the subgiant phase (with N < 1) followed by a steady
increase of this size during the red giant phase (with N > 1).
This coincides with the evolution of the coupling factor. We note
that the discontinuities in the evolution on the red giant branch
come from the discontinuity in composition at the base of the
convective envelope, which, in turn, creates a peak of the Brunt-
Väisälä frequency (see for example Cunha et al. 2015).

Regarding the dependence of q with the stellar mass, the two
regimes are again observed, as expected from the behaviour of
the density contrast in the evanescent region. During the sub-
giant phase, the coupling factor strongly depends on the mass
while, on the red giant branch, the coupling factor is much less
sensitive to the stellar mass. In both cases, the same global trend
is nevertheless observed: the higher the mass, the lower the q
value. Firstly, on the red giant branch, the density contrast in the
evanescent region compared to the inner sphere is large enough
for the profiles of the Brunt-Väisälä and Lamb frequencies to be
assumed to be parallel and the structure of the evanescent region
is quite comparable for all the masses at a given value ofN . The
width of the evanescent region nevertheless depends slightly on
the stellar mass, as seen in Fig. 17, explaining the slight depen-
dence on q observed in Fig. 16 on the red giant branch. Only the
position of the ultimate drop of the coupling factor by the end of
the sequences appears to be significantly affected by the stellar
mass. However, as we restricted ourselves to models before the
luminosity bump, this drop is not visible for every track. Sec-
ondly, on the subgiant branch, the density contrast is moderate
and depends on the stellar mass (see Fig. 14). Because of this
lower density contrast than on the red giant branch, the Brunt-
Väisälä profile does not follow a simple power-law relation with
the radius and may not be assumed to be parallel to the profile
of the Lamb frequency. This impacts the evolution of the width
of the evanescent region for the different masses, as shown in
Fig. 17, and thus explains the significant mass dependence of
the coupling factor on the subgiant branch. We even note that
the 1.8 M� model exhibits an oscillation with regard to the size
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Fig. 18. Variation of ∆π1 as a function of ∆ν0 for 1 M� models with
several compositions, represented by the colours. The dashed lines cor-
respond to the asymptotic values and the vertical dotted lines to the
transition at N = 1.

of its evanescent region. Indeed, both critical frequencies may
cross in this model. As the star evolves, νmax decreases. It there-
fore reaches this crossing of the frequencies, corresponding to
a very narrow evanescent region. Then, as the star continues to
evolve, the evanescent region increases in size again. Further-
more, as the frequency profiles also evolve with time (mainly
due to the evolution of the density contrast), the point at which
they cross may evolve as well and other minima of the width of
the evanescent zone may occur, as we observe in Fig. 17. This
phenomenon will be further discussed in Pinçon et al. (in prep.).

3.3. Variation with chemical composition along the evolution

To study the impact of the chemical composition on the fitted
parameters, we computed several tracks for a 1 M� star with dif-
ferent initial hydrogen and metals abundances. We consider pairs
of initial hydrogen and metal abundances in X0 ∈ [0.68, 0.72]
and Z0 ∈ [0.011, 0.019]. The results are shown in Figs. 18–21
for ∆π1, εp, εg and q, respectively. In Fig. 18, we observe that
the several tracks for ∆π1 are almost indistinguishable from one
another during the red giant phase. Only a small difference is
visible on the subgiant phase. Nevertheless, thanks to a close
inspection of our Fig. 18, alongside Fig. 1 of Farnir et al. (2019),
we expect that an improper determination of the metallicity will
impact the inferred mass in a similar way as it does in the main
sequence case. Indeed, at fixed ∆π1 and ∆ν0 values, a variation
of 0.008 in Z0 could change the estimated mass of about 0.1 M�.
This suggests that, in addition to the measurements of ∆ν and
∆π1, a spectroscopic measurement of the composition will be
necessary to a good determination of the mass, radius and age
of subgiant stars. Indeed, the initial composition may impact the
inferred stellar mass, thus the inferred age. Regarding εp, we do
not note any significant impact of the chemical composition on
the evolution of this indicator, as illustrated in Fig. 19. Finally,
concerning q and εg, we note in Figs. 20 and 21 that only the
position (in either νmax or logN) of the drop in the values of εg
and q just before the luminosity bump is significantly affected by
the composition. As shown by Pinçon (2020), this likely results
from a modification of the position of the base of the convective
envelope.

The impact of the metallicity on the measured value of the
period spacing and coupling factor has already been studied by
Jiang et al. (2020). In this work, they looked at the evolution of
these indicators on a grid of red-giant models, but their fits were
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Fig. 19. Variation of εp as a function ofN for 1 M� models with several
compositions, represented by the colours. The dashed lines correspond
to the values computed with WhoSGlAd on the radial modes.
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Fig. 20. Variation of εg as a function of νmax for 1 M� models with sev-
eral compositions, represented by the colours.

made around a fixed value of the pressure radial order np only.
While they also observe that there is no significant impact of
the metallicity on the evolution of ∆π1, they note a slight impact
of the metallicity on the rate of decrease of q. A close look at
their Fig. 9 also seems to indicate that this dependency with
metallicity mostly appears for the youngest stars. The individ-
ual trends seem to settle to a common one as the stellar evolu-
tion goes on during the red giant branch. Nevertheless, we do not
observe such distinction with the composition. A possible reason
for this difference might stem from the fact that they consider the
coupling factor to depend on the radial order, np, and represent
its evolution following specific modes; whereas we consider the
coupling factor to be constant over the spectrum with a typical
set of frequencies representative of the observations all along
the subgiant and red giant branches. This is further discussed in
Sect. 4.4.

Finally, what is striking in Figs. 18–21 is that some sub-
tle features are present for every composition considered. For
example, looking at the evolution of the gravity offset in Fig. 20,
it stands out that the oscillation present on the subgiant phase
is present for all the compositions. Furthermore, in Fig. 21, we
also observe that the local minimum in the coupling factor, right
before the transition at N = 1, is present for every track. This
might result from the fact that the changes in composition con-
sidered might not significantly affect the evolution on the sub-
giant phase and, therefore, the evolution of the indicators during
this phase. Another striking feature is the homology between the
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Fig. 21. Variation of q as a function of N for 1 M� models with several
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track with X0 = 0.68 and Z0 = 0.015 and the one with X0 = 0.72
and Z0 = 0.011. The tracks are almost identical.

Overall, we may assert that the indicators are degenerate
with the chemical composition on the red giant phase, except
for the latest stages of evolution: for instance the drops in εg and
q before the luminosity bump.

4. Discussion

In the present section, we further discuss the results presented in
Sect. 3 as well as possible improvements of the EGGMiMoSA
method.

4.1. Impact of the considered set of modes

In the present paper, we considered modes in the range of the
width 0.8ν0.88

max around νmax, determined to include at least ten
radial modes for the youngest subgiant models (Mosser et al.
2012b; Appourchaux 2020). We immediately see that this range
evolves with νmax, both in terms of its central frequency νmax and
in the number of modes. As the number of modes is discrete its
evolution experiences discontinuities. This creates the saw-like
pattern we observe in the pressure and gravity offsets (Figs. 13,
15, 19 and 20). To illustrate this effect, we plot in Fig. 22 the evo-
lution of εp for the 1 M� track as well as the mean radial order
of pressure modes, n̄p. This value is divided by 15, an arbitrary
value, such that εp and n̄p have comparable values. We observe
that both behave as a seesaw and that the discontinuities in the
values are synchronous along evolution. In the case of the obser-
vations, the set of modes also changes with evolution, which
should also create the discontinuities we observe theoretically.
Nevertheless, when attempting to carry stellar modelling of a
given star considering εp as a constraint, this will not constitute
a problem as the set of modes will be fixed by the observations.

4.2. Generalisation to spectra with holes

When adjusting the spectrum, we assume in this paper that the
modes that are adjusted are successive, that is, the difference in
radial order between the considered modes, ∆ng and ∆np, are
equal to either 0 or 1. However, when applying the method on
observational spectra, it may be the case that some modes are
not detected. Consequently, the period and frequency difference
formulations in Eqs. (13) and (16) will have to be adapted con-
sidering proper values for the ∆ng and ∆np parameters in these
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Fig. 22. Variation of εp with evolution for the 1 M� track. The dashed
line represents the variation of the estimation with WhoSGlAd on radial
modes and the dot-dashed line the mean pressure radial order of modes
considered divided by 15.

equations. This will thus require that a proper identification of
the modes has been carried out.

Moreover, regarding the initial estimation of the parame-
ters to be adjusted, the position and number of holes might be
problematic in some specific cases. For example, as we esti-
mated ∆π1 via the maximum of the local period differences in
g-dominated spectra, missing several modes in the central region
between dips would lead to an underestimation of its value. In
addition, the coupling factor is estimated from the ratio between
the maximum and minimum of the local difference in period (for
g-dominated spectra) or in frequency (p-dominated). Therefore,
missing modes close to these minima or maxima might severely
impact the initial estimate of q. However, Mosser et al. (2018)
have showed that, with Kepler data, g-dominated mixed modes
should be below the limit of observability only for evolved giant
stars with ∆ν ≤ 6 µHz, for which only p-dominated mixed
modes would be detected. This actually corresponds to the most
evolved stars, which are close to the luminosity bump, consid-
ered in this study. The number of observed g-dominated modes
should increase as we go down the red giant branch, meaning
that younger stars should constitute less of a problem. There-
fore, it will be necessary in future studies to test the ability of the
method to provide correct results in such evolved cases.

4.3. Higher order contributions to the asymptotic formulation

In the present paper, we considered the pressure phase, θp, to
depend linearly on the frequency. However, because the set of
modes is broad in the case of subgiant stars (about 10∆ν wide),
the large separation may not be considered to be constant over
this interval. As an illustration, its relative variation in the sub-
giant star considered in Fig. 6 is of about δ∆ν

∆ν
∼ 5%. Further-

more, the mean value of the pressure radial order is of np ∼ 20 in
such stars. As a consequence, the product of both quantities, cor-
responding to the error made by considering only a linear pres-
sure phase, is on the order of unity. It is therefore not negligible
compared to typical observed uncertainties on εp. In such a case,
the assumed formulation for the pressure phase may not be valid
any more. Therefore, it may be necessary to include second-
order contributions to this phase. This effect may be so impor-
tant that it may result in the addition or removal of a p-dominated
mode to the set of considered frequencies. Following this discus-
sion, the case of the gravity phase of evolved red-giants naturally
comes to mind, as such stars span a large range of gravity radial
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Fig. 23. Fitted individual period spacings as a function of frequency for
the same red-giant model as in Fig. 8, but the spectrum has been binned
for each individual bump. The green vertical dashed lines delimit each
bin.

orders. However, Pinçon et al. (2019) analytically showed that
the second order contribution to the gravity phase remains small
compared to the current observed uncertainties on the gravity
offset for stars typically observed before the luminosity bump.

For the evolved red giant stars, it may again be neces-
sary to include higher order contributions to the pressure phase
(Mosser et al. 2013). Indeed, we noted in Fig. 8 that there is a
slight shift in the position of the ∆P dips as well as small dif-
ferences in their exact magnitude. This can now be caused by
the fact that the hypothesis that the number of nodes in the pres-
sure cavity is large and thus that the local wavelength is small is
not verified for the pressure dominated modes. Indeed, the radial
order of p-dominated modes is very low, namely, np ∼ 5.

The inclusion of such higher order contributions to the pres-
sure phase might be necessary to improve the robustness of the
method and of the measured seismic indicators. As a conse-
quence, it will be implemented and tested in subsequent papers
of this series.

4.4. Frequency dependence of the coupling factor in evolved
red giants

Cunha et al. (2019) showed that, for evolved models, the cou-
pling factor may depend on the frequency. This is due to the
fact that the evanescent zone has penetrated into the convective
zone. As a consequence, the Brunt-Väisälä frequency drops to
zero and is no longer log-parallel to the Lamb frequency. The
relative width of the evanescent region defined in Eq. (19) may
not be considered constant with respect to the frequency any
longer. Therefore, the coupling factor may in turn depend on the
frequency (Pinçon et al. 2020). To mimic this effect, we binned
the oscillation spectrum of the evolved giant presented in Fig. 8
into sub-spectra containing only one dip each. The binned spec-
trum is shown in Fig. 23. We then fitted individual q values in
each sub-spectra. The evolution of the coupling factor as a func-
tion of the central frequency of each bin is displayed in Fig. 24.
We indeed observe that it may vary with the frequency in an
almost linear fashion. Only the coupling factor in the lowest
frequency bin strays far from the linear trend. This may result
from the asymmetric number of modes around the dip. Finally,
we note that the variation of the coupling factor on the spec-
trum is significant when compared to the constant fitted value.
Indeed, while the fitted value is of about 0.12 (comparable to
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Fig. 24. Evolution of q throughout the binned spectrum presented in
Fig. 23.

values in the literature, see Mosser et al. 2017), it changes from
∼0.11 to ∼0.22 along the spectrum. This illustrates the neces-
sity to account for its dependency with the frequency in order to
properly interpret its value.

4.5. Glitches

A further refinement of the technique would be the inclusion of
glitches in the formulation used. These glitches are the result of
a sharp variation (compared to the wavelength of the incoming
mode) in the stellar structure. Their signature is an oscillating
feature in the oscillation spectrum. Cunha et al. (2015) showed
that buoyancy glitches, caused by a sharp variation in the Brunt-
Väisälä frequency, are mainly found for red giant stars at the
luminosity bump, at the early phases of helium core burning
and at the beginning of helium shell burning. In this paper, we
only consider models before the luminosity bump. Therefore, we
should not expect the detection of such glitches in these mod-
els. Nonetheless, their inclusion will be a necessary step to the
application of the EGGMiMoSA method to more evolved stel-
lar models and data. Furthermore, such glitches carry essential
information for constraining the stellar cores of giants as well as
the transport processes of chemical elements.

Aside from buoyancy glitches, there are the acoustic glitches,
found in the pressure part of the spectrum. In the case of red
giants, we may observe the signature of the helium glitch, created
by the second ionisation zone of helium. Therefore, it holds
information about the surface helium content, providing addi-
tional constraints to stellar models. The study of such glitches
in giant stars has been carried in the past (e.g., Miglio et al.
2010; Dréau et al. 2020). Combining the present method with
WhoSGlAd (Farnir et al. 2019) we will be able to retrieve this sig-
nature in the p-dominated modes in a robust way. The inclusion
of both the buoyancy and acoustic glitches in the dipolar modes
will be discussed in subsequent papers of this series.

5. Conclusion

With the aim of defining relevant seismic indicators and rely-
ing on a prior modes extraction (e.g., Mosser et al. 2015;
Gehan et al. 2018; Appourchaux 2020), we present a method of
automated, consistent, robust, and fast adjustment of observed
and theoretical mixed-mode oscillation spectra. Theoretical
oscillations spectra of low-mass subgiant and red-giant stars are
well adjusted, as illustrated in Figs. 6–8.
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We explored the probing potential of the mixed-mode param-
eters (∆ν, ∆π1, εp, εg, and q) as indicators of the stellar structure
of subgiant and red giant stars, along a grid of models for masses
between 1.0 M� and 1.8 M� (extended to 2.1 M� in the case of
∆π1) and initial chemical compositions in X0 ∈ [0.68, 0.72] and
Z0 ∈ [0.011, 0.019]. Overall, the evolution of the indicators dis-
plays clear trends and the chemical composition has only a slight
impact. In contrast, we note that the evolution of the parameters
with the mass follows two regimes, depending on the evolution-
ary stage of the star.

During the subgiant phase, because of a moderate core-
envelope density contrast, the mixed-mode parameters evolve
differently with ∆ν according to the stellar mass. Notably, the
evolution of ∆π1 in subgiants is such that it may be used, com-
bined with ∆ν and a proper measurement of the metallicity, to
infer the stellar mass, radius and age (Fig. 11). We also demon-
strate that the asymptotic period spacing tightly agrees with the
fitted one. This came as a surprise as the contribution of the grav-
ity modes departs from the asymptotic regime for these stars.

As the stars evolve to the red giant phase, the core-envelope
density contrast becomes large. As a consequence, the structure
of the evanescent region is almost independent of the stellar mass
and the evolutions of the pressure offset, gravity offset, and cou-
pling factor as a function of ∆ν are not really affected by the stel-
lar mass in this phase. We showed that this is also true for ∆π1 in
stars with masses .1.8 M� because of the core electron degen-
eracy, which makes the helium core density quasi independent
of the stellar mass at a given value of ∆ν. Above this threshold,
the electron degeneracy is lifted and the evolution of ∆π1 again
depends on the mass. Observing stars in that region would there-
fore allow us to constraint their masses, radii, and ages, similarly
to the case of subgiants. However, such stars evolve swiftly and
might not be observed.

Here, we provide the first depiction, to our knowledge, of the
gravity offset evolution along a grid of models during both the
subgiant and red giant phases. The evolution during the red-giant
phase agrees with the observations of Mosser et al. (2018) and
the asymptotic computations from Pinçon et al. (2019). As the
gravity offset corresponds to the phase lag of the g-dominated
modes induced at the inner edge of the evanescent region, we
expect it should hold information about this region. However,
some issues remain to be tackled as the behaviour of this indica-
tor remains erratic in the subgiant phase.

The evolution of the coupling factor along our grid of models
also qualitatively agrees with the observations of Mosser et al.
(2017). We also show, based on the study of Pinçon et al. (2020),
that its evolution is concordant with that of the width of the
evanescent region (see Fig. 17).

Owing to the use of the asymptotic formulation and appropri-
ate estimation of the mixed-mode parameters, the EGGMiMoSA
technique offers a robust and fast1 adjustment of the mixed-mode
spectra displayed by subgiant and red giant stars. Furthermore,
we also plan on extending the method to include refinements
of the asymptotic formulation such as higher order contribu-
tions and glitches. Finally, we expect that the technique would
represent a great asset to the automated treatment of large sam-
ples of data as will be generated by spacecrafts such as PLATO
(Rauer et al. 2014), which will observe a great number of sub-
giant stars (core program) and red-giant stars (secondary science

1 Computation times are much smaller than those necessary to
compute theoretical adiabatic frequencies.

program). Indeed, after a proper modes extraction, the measured
seismic indicators can be used as constraints on stellar models
to automatically compute stellar parameters with model search
algorithms such as AIMS (Rendle et al. 2019).
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Appendix A: Bounds of the asymptotic frequency
differences

Fig. A.1. Evolution of the phase function with the frequency over the
large speration. The phase function for different pressure radial orders
is represented in blue. The straight line represents the identity function
f (x) = x. Its intersections with the phase function are the solutions, in
red. The grey square domains represent regions of constant np values.
The vertical dashed lines are the positions of pure g-modes. The mixed-
mode parameters used are q = 0.2 and ∆ν∆π1 = 200

The method presented in Sect. 2 takes advantage of the theo-
retical bounds of the first and second frequency differences of
the asymptotic frequency pattern. On the one hand, the first fre-
quency (resp. period) difference between two consecutive modes
normalised by ∆ν (resp. ∆π1) is always smaller than unity. On
the other hand, the second frequency difference in (Eq. (6)) dis-
plays values greater than 1 in a p-dominated spectrum while it
presents values lower than 1 in g-dominated spectra. In the cur-
rent section, we mathematically demonstrate these statements.

A.1. Case N < 1 over the spectrum

In a first step, we study the properties of the asymptotic fre-
quency pattern focusing on the case where the local g-dominated
mode density N(ν) < 1. Using the expression of the pressure
phase (Eq. (2)), we may first rewrite the asymptotic resonance
condition (Eq. (1)) as a function of the independent variable
x = ν/∆ν. In this form, the asymptotic frequency pattern is
obtained by solving the implicit relation

x = F (np, x) = np + εp +
1
π

arctan
[
q tan

(
θg (x)

)]
, (A.1)

where np is the pressure radial order and the gravity phase θg
(Eq. (3)) is also expressed as a function of the variable x, that is,

θg(x) = π
[
xN(x) − εg + 1/2

]
, (A.2)

with N(x) =
(
x2∆ν∆π

)−1
the local g-dominated modes density

defined in Eq. (4) but rewritten in terms of the x variable.
As an illustration, the F function in the case N(x) < 1 is

plotted as a function of x in Fig. A.1 for different values of np.
To plot this figure, we choose ∆π1∆ν ≈ 200, which is a typical
value for an observed subgiant star. The solutions of the implicit
equation in Eq. A.1 are provided by the intersection between the

Fig. A.2. Second frequency difference δν2 as a function of the nor-
malised period of mixed modes (dots). The red and blue colours are
for q = 0.1 and q = 0.4, respectively. It is plotted for a typical value
of ∆ν∆π1 = 200. The corresponding dashed curves show the evolu-
tion of N ′.

F function and the identity function f (x) = x represented by the
solid black line. These solutions are shown as red filled circles.
In this figure, a given value of np is associated with a horizontal
strip located in the range [np + εp − 1/2, np + εp + 1/2[ in the ver-
tical axis. In such a horizontal strip, we see that the F function
exhibits discontinuities as a function of x. These discontinuities
occur at values, xng , which correspond to the frequencies of pure
g-modes verifying the condition θg = (ng + 1/2)π with ng ∈ N
the gravity radial order. The values of xng are thus provided by

xng =
1

∆π1∆ν

(
ng + εg

)−1
. (A.3)

The positions, xng , for different values of ng are represented by
vertical dashed lines in Fig A.1. As the gravity phase θg has a
local period in x of N(x) < 1, it is obvious that two consecutive
pure gravity modes are such that: xng − xng+1 > 1, as confirmed in
Fig. A.1. Over a range Ing =]xng+1, xng ] (referred to as ‘g-subset’)
and for a given value of np, we also note that F (np, x) is contin-
uous and monotonically decreasing as a function of x, which can
be easily checked by deriving this function with respect to x.

With framework set out thus far, it is now possible to study
the bounds of the first and second differences of the solution pat-
tern in a simple way. For the sake of convenience, we start the
investigation with the first difference. Firstly, we focussed on a
g-subset Ing . Over such an interval, we distinguished three cases:
1. On each subset Inp =

[
np + εp − 1/2, np + εp + 1/2

[
(referred

to as ‘p-subset’) such that Inp ⊂ Ing , the f function mono-
tonically and continuously increases from np + εp − 1/2 to
np+εp+1/2. In contrast, the F (np, x) function monotonically
and continuously decreases and is such that: np + εp − 1/2 <
F (np, x) < np + εp + 1/2. Therefore, both functions intersect
only once and there is only one solution in the p-subset Inp .

2. Over the subset In−p =]xng+1, n−p + εp + 1/2], where n−p is the
lowest integer such as xng+1 ≤ n−p + εp + 1/2, according to the
continuity and the monotonic behaviour of the F and f func-
tions, we still have only one solution since F (n−p , xng+1) =

n−p +εp +1/2 ≥ xng+1 and F (n−p , n
−
p +εp +1/2) ≤ n−p +εp +1/2.

3. Over the subset In+
p = [n+

p + εp − 1/2, xng ] where n+
p is the

largest integer such as xng ≥ n+
p + εp − 1/2, according to

the continuity and the monotonic behaviour of the F and f
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functions, we again have only one solution since
F (n+

p , xng ) = n+
p + εp − 1/2 ≤ xng and F (n+

p , n
+
p + εp − 1/2) ≥

n+
p + εp − 1/2.

As a result, over a g-subset Ing , each solution is associated with a
unique value of np. Now, because n+

p −n−p ≥ 1 since xng − xng+1 >
1 when N < 1, there are at least two solutions over Ing , and
we call xk the solution associated with the pressure radial order
np,k = n−p + k with 0 ≤ k ≤ n+

p − n−p . We thus have for each
successive solutions

xk+1 − xk = F (np,k+1, xk+1) − F (np,k, xk)
= 1 + F (np,k, xk+1) − F (np,k, xk), (A.4)

where the last equality comes from the definition of the phase
function (Eq. A.1) and the fact that the difference of pressure
radial order between two successive solutions is ∆np = np,k+1 −

np,k = 1. Because θg(x) monotonically decreases over Ing , the F
function continuously decreases as well and we have:

θg(xk) > θg(xk+1)⇒ F (np,k, xk+1) − F (np,k, xk) < 1 , (A.5)

such that xk+1−xk < 1. Finally, the last case to tackle is when two
successive solutions belong to two successive distinct g-subsets
Ing and Ing−1. We have just shown that these two solutions belong
to the same p-subset Inp such as xng ∈ Inp . The difference of pres-
sure radial order between these two successive solutions is thus
∆np = 0 and it is trivial to conclude that the difference between
the two solutions remains lower than unity. All these findings are
well illustrated in the square grey domains in Fig. A.1, which
represent the ‘p-domain’ Inp × Inp that contains the solutions
of the implicit relation. To summarize this first part, we have
thus shown that the difference between two successive solutions
of the implicit equation is smaller than unity. Converting this
result as a function of the frequency ν j (listed in ascending order
with respect to the subscript j), we therefore obtain in pressure-
dominated spectra such as N(ν) < 1, such that

ν j+1 − ν j

∆ν
< 1 , (A.6)

which in terms of period P j = 1/ν j is equivalent to

P j − P j+1

∆π1
=
ν j+1 − ν j

∆ν

∆ν

∆π1ν j+1ν j
(A.7)

<
ν j+1 − ν j

∆ν
N

(
ν j

)
< 1 ,

becauseN(x) < 1 in the present case. Moreover, we have shown
that the difference of pressure radial orders between two succes-
sive modes is either equal to unity when the modes belong to the
same g-subset associated with a unique gravity radial order ng
(i.e., ∆np = 1 and ∆ng = 0), or equal to zero when the modes
belong to two successive distinct g-subsets associated with suc-
cessive gravity radial orders ng and ng − 1, respectively (i.e.,
∆np = 0 and ∆ng = −1).

Secondly, we now search the bounds of the second difference
between two solutions x j+1 and x j−1. According to the previous
paragraph, we always have x j+1− x j < 1 whenN < 1, so that the
upper bound of the second difference is directly x j+1 − x j−1 < 2.
Regarding the lower bound, we first note that when the three
considered solutions, x j−1, x j, and x j+1, are part of the same
g-subset Ing , they are associated with successive values of the
pressure radial order; thus, it is obvious that 1 < x j+1 − x j−1
since ∆np = np, j+1 − np, j−1 = 2. When the three solutions are
spread over two g-subsets, such that x j ∈ Ing and x j+1 ∈ Ing−1, we
cannot directly draw a conclusion. To demonstrate that the result

also holds in that case, we define the functions around the pure
g-mode xng :

F̃
(
np, x; xng

)
= np + εp (A.8)

+
1
π

arctan
[
q tan

{
θ̃g

(
x; xng

)}]
,

and

θ̃g(x; xng ) = π
(
xng − x

)
+ θg(xng ) , (A.9)

where we recall that θg(xng ) = π(1/2 + ng). In an analogous way
to the previous steps, we define the three consecutive solutions
x̃ j−1, x̃ j, and x̃ j+1 around xng of the new implicit equation:

x̃ = F̃
(
np, x̃; xng

)
. (A.10)

As shown previously, the solutions x̃ j+1 and x̃ j−1 around xng are
respectively associated with the radial orders np, j+1 and np, j−1 =
np, j+1 − 1, as consecutive solutions on both sides of xng verify
∆np = 0. In this case, the F̃ function has a period of 1 and it
is obvious that x̃ j+1 − x̃ j−1 = ∆np = 1. To go further, we then
express the θg phase in Eq. A.2 as

θg(x)
π

= xN(x) − εg + 1/2 (A.11)

= xN (x) − xngN(xng ) + ng + 1/2

=
xng

x
N(xng )

(
xng − x

)
+ ng + 1/2,

where the second equality comes from Eq. (A.3). By compar-
ing Eq. (A.11) with the definition of θ̃g in Eq. (A.10), we can
determine that:

θ̃g(x̃ j+1; xng ) < θg(x̃ j+1), (A.12)

since x̃ j+1 > xng and N(xng ) < 1, which implies that

x̃ j+1 = F̃ (np, j+1, x̃ j+1; xng ) < F (np, j+1, x̃ j+1). (A.13)

In other words, this means that the identity function and the F
function do not intercept for x < x̃ j+1 inside the considered inter-
val Inp, j+1∩ Ing−1, so that they will necessarily intercept at a higher
value (since we have shown before that there is a unique solution
in such an interval), that is,

x j+1 > x̃ j+1. (A.14)

Similarly, for x̃ j−1 < xng , we have:

θ̃g(x̃ j−1; xng ) > θg(x̃ j−1), (A.15)

implying

x̃ j−1 = F̃ (np, j−1, x̃ j−1; xg,i) > F (np, j−1, x̃ j−1) . (A.16)

This means that the identity function and the F function do not
intercept for x > x̃ j+1 inside the considered interval Inp, j−1 ∩ Ing ,
so that they will necessarily intercept at a lower value, that is,

x j−1 < x̃ j−1. (A.17)

As a result, we find that:

x j+1 − x j−1 > x̃ j+1 − x̃ j−1 = 1. (A.18)
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In summary, we thus conclude that for N < 1, the second fre-
quency difference is bounded, such that:

1 < δν2, j =
ν j+1 − ν j−1

∆ν
< 2. (A.19)

A.2. Case N > 1 over the spectrum

In a g-dominated spectrum, the analysis can be put in a similar
form to the case treated in App. A.1 if we apply the following
substitutions

ν← P , ∆π1 ← ∆ν , ∆ν← ∆π1 ,

εg − 1/2← εp , εp ← εg − 1/2 , N ← N ′′ ≡
1
N

,

q←
1
q
, np ← ng , ng ← np ,

θg ← θp . (A.20)

Indeed, in the caseN > 1, we haveN ′′ < 1, and it is possible to
follow the same reasoning as in the previous section.

One the one hand, for the first difference, when N > 1 over
the considered spectrum, we obtain:

P j − P j+1

∆π1
< 1 (A.21)

ν j+1 − ν j

∆ν
=

P j − P j+1

∆π1

∆π1ν jν j+1

∆ν

<
P j − P j+1

∆π1
N

(
ν j+1

)−1
< 1 . (A.22)

Moreover, the difference of gravity radial orders between two
successive modes (i.e., still listed in ascending order with fre-
quency) is either equal to −1 when the modes belong to the same
p-subset associated with a unique pressure radial order np (i.e.,
∆ng = −1 and ∆np = 0), or equal to zero when the modes belong
to two successive distinct p-subsets associated with successive
pressure radial orders np and np + 1, respectively (i.e., ∆ng = 0
and ∆np = 1).

On the other hand, for the second period difference, we
obtain when N > 1 over the considered spectrum

1 <
P j−1 − P j+1

∆π1
< 2 . (A.23)

For the second frequency difference, whenN > 1, we can solely
determine:

δν2, j =
ν j+1 − ν j−1

∆ν
=

P j−1 − P j+1

∆π1
N ′j
−1 , (A.24)

where an alternative definition for the g-dominated mode density
naturally appears, namely,

N ′j =
∆ν

∆π1ν j+1ν j−1
. (A.25)

Since N(ν j+1) < N ′j , we have N ′j > 1 over the considered spec-
trum. As soon as N ′ > 2, Eq. (A.24) shows us that δν2, j < 1. In
the case 1 < N ′ < 2, we can adapt the reasoning made in App.
A.1. Indeed, either the solutions x j−1 and x j+1 are associated with
the same pressure radial order (i.e., ∆np = 0 and ∆ng = −2) and
x j+1− x j−1 < 1, or the difference in np is equal to unity (i.e., with
∆ng = −1)2. In the second case, this means that the solutions x j−1

2 We recall that ∆np < 2 between x j+1 and x j−1 when N > 1, in a
similar way that ∆ng > −2 when N < 1.

and x j+1 are located on both sides of a pure g-mode xng . Apply-
ing the reasoning as in App. A.1 to determine the bounds of the
second frequency difference, we obtain x j+1 − x j−1 < 1 asN > 1
in the present case. We therefore conclude that over a spectrum
such as N > 1, we have

δν2, j =
ν j+1 − ν j−1

∆ν
< 1. (A.26)

A.3. Case N = 1 somewhere in the spectrum

The last case to tackle is when the two solutions that are com-
pared are located from each side of the transition point x? where
N(x?) = 1.

For the first difference, the demonstration is simple. We
denote xq (resp. xq+1) as the largest (the smallest) solution lower
(resp. greater) than x?. If we note n?g as the lowest gravity radial
order such a xn?g ≤ x?, we have x? − xn?g < 1 since otherwise n?g
would not be the highest lowest gravity radial order such that
xn?g ≤ x? as xng − xng+1 < 1 when N > 1. Therefore, we have
two cases. If xq < xn?g , xq+1 is then necessarily comprised in the
same p-subset as xq. If xq > xn?g , either xq+1 > xn?g −1 and xq+1 is
then again necessarily comprised in the same p-subset as xq; or
xq+1 < xn?g −1 and xq+1 then belongs to an adjacent p-subset to that
of xq. In all cases, following the same reasoning as in Appendix
A.1, we have x j+1 − x j < 1, which is therefore unconditionally
met over the whole spectrum. This is obviously also true for the
difference in period.

For the second difference, we consider two solutions x j−1 and
x j+1 such as x j−1 < x? and x j+1 > x?. We also consider the
solutions of the implicit equation:

x̄ = F̃
(
np, x̄; x j−1

)
, (A.27)

where F̃ is defined in Eqs. A.8. It can be straightforward to
see that x j−1 is solution of Eq. (A.27). By considering the con-
secutive solutions x̄ j and x̄ j+1 of Eq. (A.27), we obviously have
x̄ j+1 − x j−1 = 1 since the F̃ function has a period of 1. To go
further, we then compute from Eq. A.9

θ̃g(x j+1; x j−1)
π

−
θg(x j+1)

π
= (N ′j − 1)(x j+1 − x j−1) , (A.28)

with N ′j defined as in Eq. (A.25). Therefore, if N ′j > 1,
we have θ̃g(x j+1; x j−1) > θg(x j+1) according to Eq. (A.28). This
means that the F̃ function and the identity function inter-
cept at higher values than x j+1. In other words, x j+1 < x̄ j+1,
and thus x j+1 − x j−1 < 1. Conversely, if N ′j < 1, we have
θ̃g(x j+1; x j−1) < θg(x j+1). This means that the F̃ function and the
identity function can intercept at lower values than x j+1. In other
words, x j+1 > x̄ j+1, and thus x j+1 − x j−1 > 1.

Therefore, N ′j appears to be a relevant proxy of the
g-dominated modes density over the whole spectrum. Indeed,
we remind that in the previous cases considered in Sects. A.1
and A.2, when N(ν j+1) > 1, then N ′j > 1 and δν2, j < 1, and
when N(ν j−1) < 1, then N ′j < 1 and δν2, j > 1. Adding in the
results of the present section, we thus conclude that over the
whole spectrum:

0 < δν2, j < 2

sgn
(
δν2, j − 1

)
= sgn

(
1 − N ′j

)
, (A.29)

where sgn() denotes the sign function.
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A.4. Illustration

We illustrate in Fig. A.2 the evolution of the second difference
(Eq. (6)) with the reduced period, obtained by solving Eq. (1).
We show this evolution for two choices of the coupling factor
q = 0.1 and q = 0.4 in red and blue, respectively. We also show,
as dashed lines, the evolution of the alternate definition for the
g-dominated modes density N ′ in Eq. (A.25). We observe that
N ′ and the second frequency difference cross at a value of 1, as
expected from the previous sections. As a consequence, we may
locate the transition where N j = 1 using the second frequency
difference.

Appendix B: Deriving ζ′

With analogous reasoning as in Mosser et al. (2015), we may
express the variation of frequency with the mixed-mode radial
order, n = np − ng. Assuming the spectrum to be dominated by
the pressure modes, N � 1, we consider that the frequency of
a mixed mode experiences a perturbation from the evenly space
frequencies, η. We write:

ν = n∆ν + η. (B.1)

Because of periodicity, when introducing this relation in the
phase of pressure modes, θp (Eq. (2)), tan θp becomes

tan
[
π
(
η

∆ν
− εp

)]
. (B.2)

The derivation of Eq. (1) with respect to n, assuming the five
mixed-mode parameters to be constant with n, then yields

1
∆ν cos2 θp

dη
dn

= −
q

∆π1ν2 cos2 θg

dν
dn
. (B.3)

Finally, using the relation cos2 θp =
cos2 θg

q2 sin2 θg+cos2 θg
(obtained from

Eq. (1)), using η = ν−n∆ν, and the definition of the g-dominated
modes density evaluated in ν (Eq. (4)), we retrieve the final
expression:

dν
dn

= ∆ν

1 +
qN

cos2 θg + q2 sin2 θg

−1

. (B.4)

We note that θg andN in Eq. (B.4) are two functions of frequen-
cies provided by Eqs. (3) and (4).

Appendix C: Radial order difference between
successive modes

Based Eq. (13), along with the fact that between two
g-dominated modes there may exist a p-dominated mode, it is
not obvious that ∆ng should be equal to zero or one. By carefully
studying the behaviour of first and second frequency differences,
Appendix A provides a justification for its value. Nevertheless,
to focus only on the ∆ng parameter, we follow a slightly different
but equivalent approach in the present section.

From Appendix A, we know that the local value of the period
spacing is at most equal to the asymptotic value ∆π1. Further-
more, from the ordering of frequencies, ∆Pi must be positive.
We thus have (from Eq. (13)):

0 < ∆ng + ∆ψi/π ≤ 1. (C.1)

Also, we have that θp is an increasing function of the frequency
(see Eq. (2)), thus θp,i < θp,i+1. As the arctan function is con-
tinuous and monotonous and the tan function is continuous and
monotonous over a given interval θp ∈ [kπ − π/2, kπ + π/2] , k ∈
N, the ψi = arctan

(
tan θp,i/q

)
is continuous and monotonous

over the same interval. In addition, in such an interval, ψi
increases with θp,i. Thus, ∆ψi < 0. Using the definition of the
arctan function, we know that ψ ∈ ]−π/2, π/2[ and ∆ψi/π must
be greater than −1. We may thus conclude that:

0 < ∆ng < 2, (C.2)

and, as ng only takes integer values, ∆ng = 1. This demonstra-
tion does not hold in the case where two successive modes span
over different intervals θp ∈ [kπ − π/2, kπ + π/2] , k ∈ N, the tan
function is discontinuous. In that case, ∆ψi > 0 and it is neces-
sary to have ∆ng = 0 to ensure ∆Pi/∆π1 < 1. Physically speak-
ing, this corresponds to the case when we alternate between a
g-dominated and a p-dominated mode and this is the pressure
radial order that changes, keeping a constant ng value.

Finally, with an analogous reasoning, we may conclude,
for the case of p-dominated spectra that ∆np, appearing in
Eq. (16), must also equal 1 for two successive p-dominated
modes. Again, when two successive modes span over different
intervals θg ∈ [kπ − π/2, kπ + π/2] , k ∈ N, we alternate between
a p-dominated mode and a g-dominated mode, and the gravity
radial order changes, keeping in a constant np value.
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