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ABSTRACT
State-of-the-art stellar structure and evolution codes fail to adequately describe turbulent
convection. For stars with convective envelopes such as red giants, this leads to an incomplete
depiction of the surface layers. As a result, the predicted stellar oscillation frequencies
are haunted by systematic errors, the so-called surface effect. Different empirically and
theoretically motivated correction relations have been proposed to deal with this issue. In this
paper, we compare the performance of these surface correction relations for red giant branch
stars. For this purpose, we apply the different surface correction relations in asteroseismic
analyses of eclipsing binaries and open clusters. In accordance with previous studies of main-
sequence stars, we find that the use of different surface correction relations biases the derived
global stellar properties, including stellar age, mass, and distance estimates. We, furthermore,
demonstrate that the different relations lead to the same systematic errors for two different
open clusters. Our results overall discourage from the use of surface correction relations
that rely on reference stars to calibrate free parameters. Due to the demonstrated systematic
biasing of the results, the use of appropriate surface correction relations is imperative to any
asteroseismic analysis of red giants. Accurate mass, age, and distance estimates for red giants
are fundamental when addressing questions that deal with the chemo-dynamical evolution of
the Milky Way galaxy. In this way, our results also have implications for fields such as galactic
archaeology that draw on findings from stellar physics.

Key words: Asteroseismology – methods: statistical – stars: atmospheres – binaries: eclips-
ing – open clusters and associations: individual: 6819 and 6791.

1 IN T RO D U C T I O N

Asteroseismology, i.e. the study of stellar oscillations, has become
an invaluable tool for stellar physics, yielding unique insights into
stellar structures as well as precise stellar parameters (e.g. Aerts,
Christensen-Dalsgaard & Kurtz 2010; Chaplin & Miglio 2013).
This makes asteroseismology the backbone of other flourishing dis-
ciplines branching from exoplanet research to galactic archaeology
(e.g. Miglio et al. 2009; Christensen-Dalsgaard et al. 2010; Batalha
et al. 2011; Miglio 2012; Huber et al. 2013; Miglio et al. 2013; Van
Eylen et al. 2013; Lundkvist et al. 2018; Garcı́a & Ballot 2019).

� E-mail: a.c.s.joergensen@bham.ac.uk

The success of asteroseismology relies on comparisons between
state-of-the-art stellar models with observations. However, to give
a holistic depiction of stellar structures and their evolution, current
stellar models draw on a set of simplifying approximations that re-
sult in prominent tensions with data, which greatly complicates such
comparisons. One prevailing approximation is the use of mixing
length theory (MLT; Böhm-Vitense 1958) or similar parametriza-
tions to model turbulent convection. Another such simplification is
the assumption that stars are spherically symmetric. In tandem, these
approximations result in an incorrect depiction of the outermost
superadiabatic layers of stars with convective envelopes. This model
inadequacy affects predicted model frequencies that therefore show
a systematic offset relative to observations. The described frequency
shift is known as the structural surface effect.
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By drawing upon multidimensional, radiative magnetohydrody-
namic (MHD) simulations of convection (e.g. Magic et al. 2013;
Trampedach et al. 2013), it has been shown that the structural
deficiencies that underlie the surface effect can be successfully
overcome. This has been demonstrated by different authors and has
been accomplished during the post-processing of stellar structure
models (Rosenthal et al. 1999; Piau et al. 2014; Sonoi et al. 2015;
Ball et al. 2016; Magic & Weiss 2016; Jørgensen et al. 2017;
Manchon et al. 2018; Jørgensen et al. 2019). Furthermore, recently,
stellar models that use information from multidimensional MHD
simulations throughout the stellar evolution and hereby successfully
mimic the structure of such simulations have become available
(Jørgensen et al. 2018; Jørgensen & Angelou 2019; Jørgensen &
Weiss 2019; Mosumgaard et al. 2020).

In addition to the structural surface effect, the frequencies of
stellar models suffer from the so-called modal surface effect,
denoting yet another systematic frequency offset. The modal surface
effect stems from the fact that oscillation frequencies of stars are
computed under the assumption of adiabaticity, which does not
hold true in the near-surface layers (e.g. Dupret 2004; Christensen-
Dalsgaard 2008; Townsend & Teitler 2013; Grosjean et al. 2014).
Moreover, the contribution from turbulent pressure, i.e. the pressure
stemming from the bulk motion of a convective fluid, is often not
correctly accounted for, further contributing to the aforementioned
frequency shift (cf. Houdek et al. 2017; Houdek et al. 2019;
Jørgensen & Weiss 2019; Schou & Birch 2020, for a detailed
discussion of this issue).

To compare model frequencies with observations, many authors
rely on empirical surface correction relations that address the
combined surface effect. The first such relation was proposed by
Kjeldsen, Bedding & Christensen-Dalsgaard (2008). The relation
amounts to a power law for which Kjeldsen et al. (2008) calibrated
the involved free parameters to mitigate the surface effect of the
present-day Sun. However, there is no physical justification for
using a power law, and the necessity of calibrating the relation makes
it unsuitable for any star whose global parameters deviate strongly
from those of the reference star (cf. Ball & Gizon 2017; Jørgensen
et al. 2019). To mitigate these drawbacks, one may include a
large sample of reference stars to evaluate how the power-law
description evolves across the Hertzsprung–Russel (HR) diagram
and investigate different functional forms. This was accomplished
by Sonoi et al. (2015), who employed three-dimensional MHD
simulations to overcome the structural inadequacies of stellar
models.

Like the surface correction relation by Kjeldsen et al. (2008), the
surface correction relation by Sonoi et al. (2015) is, of course, still
subject to a selection bias: both surface correction relations can only
be applied to stars whose global parameters are similar to those of
the employed reference stars or models (Jørgensen et al. 2019). This
being said, Sonoi et al. (2015) cover the global parameters of many
main-sequence stars in the Kepler field (Borucki et al. 2010). The
surface correction relation by Sonoi et al. (2015), meanwhile, suffers
from a different drawback: the computation of the reference model
frequencies relies on the so-called gas �1 approximation (Rosenthal
et al. 1999). This means that the contributions of the turbulent
pressure and non-adiabatic effects to the reference frequencies
are not correctly accounted for. While the gas �1 approximation
recovers the observed frequencies reasonably well,1 in the case of

1Albeit, even in the case of the Sun, the gas �1 approximation only recovers
the observed frequencies within a few microhertz.

the present-day Sun, it is unclear how this approximation performs
for any other star.

In contrast to Kjeldsen et al. (2008) and Sonoi et al. (2015),
Ball & Gizon (2014) present a surface correction relation with
a physically motivated functional form based on an asymptotic
analysis by Gough (1990). While their surface correction relation
still includes free parameters, these can be adjusted anew for each
target star, circumventing the need for calibrating the parameters
based on reference stars.

As regards main-sequence stars, studies by Basu & Kinnane
(2018) and Nsamba et al. (2018) show that the use of the surface
correction relation by Ball & Gizon (2014) leads to estimates for the
stellar mass, radius, and age that are consistent with those obtained
from alternative methods for handling the surface effect. One such
alternative approach relies on a set of frequency ratios that were
originally proposed by Roxburgh & Vorontsov (2003) and that have
been shown to be insensitive to the incorrect depiction of the near-
surface layers Otı́ Floranes, Christensen-Dalsgaard & Thompson
(2005). Studies by Ball & Gizon (2017) and Nsamba et al. (2018),
furthermore, show that the use of the surface correction relations by
Kjeldsen et al. (2008) and Sonoi et al. (2015) introduce systematic
errors in the stellar parameter estimates when addressing main-
sequence stars and subgiants. How well the surface correction
relation by Ball & Gizon (2014), or indeed any of the relations and
methods mentioned above, perform throughout the HR diagram,
including more evolved stages, is yet to be settled (see also Ball,
Themeßl & Hekker 2018). In this paper, we address this issue by
investigating how the use of different surface correction relations
affect stellar parameter estimates for red giants.

For this purpose, we derive stellar parameter estimates adopting
different surface correction relations for eight well-constrained
eclipsing binaries as well as 19 and 30 red giants in the open clusters
NGC 6819 and NGC 6791, respectively (e.g. Grundahl et al. 2008;
Basu et al. 2011; Brogaard et al. 2012; Miglio et al. 2012; Jeffries
Mark et al. 2013; Sandquist et al. 2013; Brogaard et al. 2015; Bossini
et al. 2017; Handberg et al. 2017; Rodrigues et al. 2017; McKeever,
Basu & Corsaro 2019).

Accurate parameter estimates for the ages of red giants are
essential for establishing the dynamical and chemical evolution
of the Milky Way galaxy. The performance of asteroseismology for
evolutionary stages beyond the main sequence thus has profound
implications for galactic archaeology, making the present study
a valuable stepping stone for future analyses. Red giants are,
furthermore, of interest to exoplanet research when addressing the
dynamics and fate of planetary systems.

Section 2 addresses the underlying Markov Chain Monte Carlo
(MCMC) approach as well as the employed stellar models. We
introduce the different surface correction relations in Section 3. In
Section 4–7, we successively present the analyses of the eclipsing
binaries and the two clusters. Our main conclusions are summarized
in Section 8.

2 AIMS: BAYESI AN I NFERENCE OF STELLAR
PA RAMETERS

To evaluate posterior distributions of stellar parameters, we compare
model predictions with observations for each individual star. For this
purpose, we employ the open-source code, Asteroseismic Inference
on a Massive scale (AIMS; Reese 2016; Lund & Reese 2018; Rendle
et al. 2019), which is based on the MCMC ensemble sampler by
Goodman & Weare (2010) using the implementation by Foreman-
Mackey et al. (2013).
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A large variety of Monte Carlo methods have found their way
into modern astrophysics. They have yielded new insights and
robust parameter estimates in a variety of astrophysical fields
and analyses, ranging from the peak bagging of stellar oscillation
frequencies to cosmology (e.g. Gruberbauer et al. 2009; Handberg &
Campante 2011; Porqueres et al. 2019a,b). Indeed, the employed
oscillation frequencies have been derived from the observed light
curves using an open-source MCMC peak-bagging algorithm called
PBJAM2 that likewise builds on the MCMC ensemble sampler
by Goodman & Weare (2010). The observed frequencies were
subsequently corrected to account for the Doppler shift that arises
from the line-of-sight motion of the star relative to the observer
(Davies et al. 2014). Three of the eight eclipsing binaries constitute
exceptions: the mode identification of KIC 4054 905, KIC 4663 623,
and KIC 9540 225 was performed using a maximum a posteriori
method based on Gaulme, Appourchaux & Boumier (2009) and
Benbakoura et al. (in preparation).

However, due to the high computational cost of successively
computing a series of stellar models, Monte Carlo algorithms are
not widespread in asteroseismic analyses that seek to derive stellar
parameters. Some notable exceptions, meanwhile, exist including
analyses of the present-day Sun (Bahcall, Serenelli & Basu 2006;
Jørgensen & Christensen-Dalsgaard 2017; Vinyoles et al. 2017) as
well as a handful of other main-sequence benchmark stars (e.g.
Benomar, Appourchaux & Baudin 2009; Bazot, Bourguignon &
Christensen-Dalsgaard 2012; Jørgensen & Angelou 2019). To
bypass the high computational cost of MCMC, AIMS computes new
samples for the Markov chain, i.e. models with a new combination
of global stellar parameters, by interpolation in an existing grid
of stellar models (cf. Section 2.1). In this way, AIMS is able to
compute a large set of samples with a total computation time of a
few hours: for each star, we compute 2000 samples for each of the
800 walkers with 10 different temperatures (see Gregory 2005 for
a general introduction to MCMC algorithms). These samples are
preceded by a burn-in phase of 4000 samples per walker. Based on
thousands or even millions of samples, AIMS is thus able to robustly
map the posterior probability distributions for the stellar parameters
of evolved stars in the same time as it takes to run a handful of stellar
evolution models from the zero-age main sequence (ZAMS) to the
red giant branch (RGB).

2.1 Stellar model grid

We constructed two grids of stellar models on the RGB, using the
CLÉS (Code Liégeois d’Évolution Stellaire; Scuflaire et al. 2008a)
stellar evolution code, and computed the associated adiabatic model
frequencies, using LOSC (Liège Oscillation Code Scuflaire et al.
2008b). One grid was employed for the modelling of the eclipsing
binaries as well as NGC 6819. The second grid was constructed to
model the stars in NGC 6791.

In the two grids, we vary both the initial mass and the metallicity,
hereby exploring a 2D parameter space. For the first grid, the
initial helium abundance (Yi) is assumed to be related to the initial
abundance of heavy elements (Zi) in such a way that an increase in
Zi is accompanied by an equal increase in Yi, i.e. �Zi/�Yi = 1.0. As
mentioned above, this grid is applied to model the eclipsing binaries
and NGC 6819. For the second grid, we set �Zi/�Yi to 2.0, in order
to recover the chemical properties of NGC 6791 (Brogaard et al.
2012). For all models presented in this paper, we do not consider

2Cf. https://github.com/grd349/PBjam.

alpha enrichment, i.e. [α/Fe] = 0.0 (cf. Section 6 for a discussion
hereon).

Both grids cover the evolution from the pre-main sequence to
the red giant branch. For the first grid, we have computed stellar
models with masses between 0.7 and 2.5 M� in steps of 0.02 M�.
The grid includes 23 different values of [Fe/H], ranging from −2.5
to 0.2 dex. As regards the metallicity, the step-size is not uniform
but alters between 0.10 and 0.15 dex. The grid contains stellar
models with radii up until 25 R�.

For the second grid, with which we address NGC 6791, we have
again computed stellar models with masses between 0.7 and 2.5 M�
in steps of 0.02 M�. The grid includes models with metallicities
between −0.1 to 0.5 dex in steps of 0.05 dex.

For both grids, the composition of the models is based on the solar
mixture evaluated by Asplund et al. (2009). We use the FreeEOS
by A. W. Irwin (Cassisi, Salaris & Irwin 2003), the nuclear reaction
rates by Adelberger et al. (2011), and the semi-empirical T(τ )
relation by Vernazza, Avrett & Loeser (1981). We employ OPAL
opacities (Iglesias & Rogers 1996) in combination with the low-
temperature opacities by Ferguson et al. (2005). We have included
both over and undershooting, setting the associated parameters (αov

and αun) to 0.1 and 0.2 for over and undershooting, respectively.
CLÉS uses instantaneous overshooting. The extent of the over and
undershooting regions are αovHP and αunHP, respectively, where
HP denotes the pressure scaleheight. In the case of convective core
overshooting, we substitute HP by the size of the convective core
(rcc), if HP > rcc. In the over and undershooting regions, we use the
radiative temperature gradient.

2.2 Likelihood

When comparing models to data, we include spectroscopic con-
straints on the effective temperature (Teff) as well as on the metal-
licity ([Fe/H]), assuming that these measurements are uncorrelated
and that the noise is Gaussian.

In addition, we include the individual radial mode frequencies
(� = 0) as asteroseismic constraints without directly imposing
constraints on the radial order of each mode. The individual
frequencies are compared to observations after applying a surface
correction specified in Section 3. While adding non-radial mode
frequencies may help to further constrain the stellar parameters,
we limit ourselves to radial modes in this analysis. The reason for
this choice is that we perform a differential study in which we
seek to compare the different surface correction relations on equal
footings. Thus, while the surface correction relation by Ball &
Gizon (2014) applies to all modes, the surface correction relations
by both Kjeldsen et al. (2008) and Sonoi et al. (2015) are only
valid for radial modes.3 We are, in other words, restricted in our
choices regarding the seismic constraints by the prescriptions we
seek to compare. As in the case of the spectroscopic constraints,
the noise of each radial mode frequency is assumed to be Gaussian
and uncorrelated with the remaining observed frequencies. This is
a reasonable approximation for the considered modes.

Regarding priors, we only include the constraints on the parame-
ters that enter the surface correction relations specified in Section 1.
In other words, we do not include any further prior restrictions

3This being said, as regards the power-law correction relation by Kjeldsen
et al. (2008), some authors have included non-radial modes by addressing
the effect of the mode inertia (e.g. Huber et al. 2013).
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on the global stellar properties other than those that are indirectly
imposed through the limited extent of our grids.

Following the described approach, however, we often find the
posterior distributions of different stellar parameters to be mul-
timodal. Furthermore, for one of the explored surface correction
relations (see Section 4), the associated échelle diagrams show
that the inferred surface effect often exceeds the observed large
frequency separation (�ν) and is a significant fraction of the
frequency of maximum power (νmax). In other words, for these
cases, the free parameters that enter the surface correction relation
are chosen by AIMS, in such a way as to shift the model frequencies
substantially. We deem such solutions to be un-physical. We will
discuss these findings further in Sections 4 and 5.

One viable approach to address both issues mentioned above
would be to make the priors on the global stellar parameters
more informative. Alternatively, one may make the likelihood more
informative. We settled for the latter approach, including νmax into
the likelihood, using the scaling relation by Brown et al. (1991) and
Kjeldsen & Bedding (1995):

νmax =
(

M

M�

)(
R

R�

)−2 (
Teff

Teff�

)−1/2

νmax�. (1)

Here, M and R denote the stellar mass and photospheric radius,
respectively.

The individual stellar acoustic mode frequencies tightly constrain
the mean density. By including νmax into the likelihood, we
introduce constraints on log g and thus lift degeneracies between
the inferred stellar mass and radius, which explains the improved
inference. Studies by Handberg et al. (2017) and Zinn et al. (2019)
show that equation (1) is both accurate and precise for stars on
the RGB with the considered metallicities (see also Viani et al.
2017) – Zinn et al. (2019) show that this statement holds true to a
2 per cent based on Gaia parallaxes (Gaia Collaboration 2016).
Below, we discuss and compare the results obtained with and
without constraints on νmax to determine the implications of adding
this quantity into the likelihood.

The fact that we obtain more accurate results by including νmax

goes to show the importance of additional constraints, including
non-seismic measurements, which complement the individual ob-
served frequencies. We note that we could have introduced other
(non-seismic) constraints into the likelihood – of course, each of
these come with their own caveats. One option would be to use the
stellar luminosity. However, adding such constraints or exploring
the ramifications of doing so would not contribute to answering
the scientific question that we address in this paper: how does the
use of specific surface correction relations affect the inferred stellar
properties. Indeed, the use of additional or alternative non-seismic
constraints might obscure the influence of the surface correction
relations by dominating the likelihood. In other words, while
good non-seismic constraints are often invaluable for asteroseismic
analyses, they do not help us to discriminate between the different
surface correction relations. As stated above, we therefore restrict
ourselves to including weak spectroscopic constraints on Teff and
[Fe/H] in addition to the constraints on νmax.

2.3 Goodness of fit

Throughout this paper, we discuss the goodness of fit for the
maximum a posteriori models, i.e. the best-fitting models within
each run. As a measure for the goodness of fit, we refer to the

reduced χ2-value of the best-fitting models:

χ2
red = 1

N

N∑
i=1

(xmod,i − xobs,i)2

σ 2
i

. (2)

Here, the sum runs over all N observational constraints, and the
subscripts ‘mod’ and ‘obs’ refer to the model and observational
values, respectively. The models, for χ2

red ≈ 1, reliably recover the
observational constraints. While models that yield χ2

red � 1 simply
constitute a poor fit, values of χ2

red � 1 imply that the data is
overfitted.

As an alternative measure for the goodness of fit, we directly
refer to the evaluated likelihood function from which we compute
the so-called Bayesian information criterion (BIC):

BIC = ln(Ns)k − 2 ln(L̂), (3)

where Ns denotes the combined number of samples from the
Markov chains, k is the number of free parameters, and L̂ denotes
the maximized value of the likelihood function. Better models
lead to lower values of the BIC: the second term in equation
(3) rewards approaches, i.e. combinations of stellar models and
surface correction relations that yield high values for the maximized
likelihood. The first term in equation (3), meanwhile, penalizes
models that reach this goal due to a high degree of complexity.

3 SU R FAC E C O R R E C T I O N R E L AT I O N S

The surface effect describes a systematic offset (δν) between the
uncorrected adiabatic model frequencies (νmod) and observations
(νobs):

δν = νobs − νmod. (4)

As discussed in the introduction, this frequency offset comes
about as a result of the structural inadequacies of state-of-the-art
stellar models as well as simplifying approximations that enter the
frequency computation.

When determining the likelihood of each model in the Markov
Chain by comparing model frequencies to observations, we correct
the model frequencies, taking the surface effect into account. We
do so using different surface correction relations. We discuss each
of these surface correction relations below.

To mitigate the surface effect, Kjeldsen et al. (2008) propose to
fit the surface effect by a power law, calibrating the exponent (b)
based on the present-day Sun:

δν

νmax
= a

(
νobs

νmax

)b

. (5)

Throughout the rest of this paper, we refer to the surface correction
relation in equation (5) as K08. We note that AIMS uses νmod rather
than νobs when adopting equation (5) under the assumption that δν

� νobs.
When following the approach suggested by Kjeldsen et al. (2008),

b is commonly set to the solar calibrated value of 4.9 (e.g. Nsamba
et al. 2018), while a is adjusted based on the observed frequencies.
Drawing upon the analysis of 3D simulations by Sonoi et al. (2015),
one may alternatively vary both a and b as a function of the global
stellar parameters:

log |a| = 8.13 log Teff − 0.670 log g − 30.2, (6)

and a is negative, while

log b = −3.16 log Teff + 0.184 log g + 11.7. (7)
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Sonoi et al. (2015) argue in favour of substituting the power-law
fit by a Lorentzian surface correction relation as this yields a better
fit to the frequency shift derived from 3D MHD simulations within
the gas �1 approximation mentioned above:

δν

νmax
= α

(
1 − 1

1 − (νobs/νmax)β

)
. (8)

In the following, we refer to the surface correction relation in
equation (8) as S15. According to the analyses by Sonoi et al.
(2015),

log |α| = −7.69 log Teff − 0.629 log g − 28.5, (9)

and α is negative, while

log β = −3.86 log Teff + 0.235 log g + 14.2. (10)

As in the case of equation (5), AIMS draws on νmod rather than νobs

when correcting model frequencies.
Finally, Ball & Gizon (2014) presents a surface correction relation

based on an asymptotic analysis by Gough (1990):

δνi

νac
= I−1

(
a−1

νac

νmod
+ a3

ν3
mod

ν3
ac

)
. (11)

Here, a−1 and a3 are free parameters, νac denotes the acoustic cut-
off frequency that scales linearly with νmax, and I is the mode
inertia. We note that we substitute νac by a reference frequency that
is related to the dynamical time-scale in AIMS. In the following, we
refer to the surface correction relation in equation (11) as BG14.

When faced with free parameters in any of the surface correction
relations mentioned above, AIMS selects that combination of param-
eters that minimizes the discrepancy between model frequencies and
observations. This is done by following the procedure suggested by
Ball & Gizon (2014). In other words, when these parameters (a, b,
α, β, a−1, or a3) are kept free, they are optimized for every single
stellar model rather than being randomly sampled by the MCMC.
In this way, the free parameters of the surface correction relations
adjust based on the pseudo-random walk through the parameters
space spanned by the stellar mass and composition.

We note that the free parameters that enter the surface correction
relations depend on both νmod and νobs, which implies that the
corrected model frequencies are correlated both internally and with
νobs. Following common practise, we do not take these correlations
into account.

The following section gives an overview of which parameters are
kept fixed and which parameters are varied in different approaches.

3.1 Choosing surface correction relation parameters

In this paper, we deal with nine distinct ways of addressing the
surface effect. We hence both employ different surface correction
relations and vary the prescriptions for the different parameters
involved. A summary can be found in Table 1.

When using K08, we either fix b to the solar calibrated value
of 4.9 as found by Kjeldsen et al. (2008), establish b using
equation (7), or let b adjust freely. In the latter case, we require
that b ≥ 0, since the surface effect increases with increasing
frequency. This is due to the frequency dependence of the upper
turning point of the oscillation. High-frequency modes thus probe
shallower near-surface layers than low-frequency modes do, i.e.
the eigenfunctions of low-frequency modes are evanescent in the
near-surface layers (cf. Christensen-Dalsgaard & Thompson 1997,
for a detailed discussion). In all three cases, we let a vary freely,
requiring that a ≤ 0. This requirement builds on the assumption

Table 1. Summary of the different surface correction relations
that are investigated in this paper.

Surf. corr. Eq. Parameters

K08 (a) (5) a ≤ 0, b = 4.9
K08 (b) (5) a ≤ 0, b from equation ((7))
K08 (c) (5) a ≤ 0, b ≥ 0
S15 (a) (8) α ≤ 0, β = 4.0
S15 (b) (8) α ≤ 0, β from equation ((10))
S15 (c) (8) α ≤ 0, β ≥ 0
BG14 (a) (11) a−1 = 0, a3 is free
BG14 (b) (11) a−1 and a3 are free
NoSC (None) – –

that the combined surface effect is negative as in the case of the
present-day Sun and other main-sequence stars (e.g. Brown 1984;
Christensen-Dalsgaard, Däppen & Lebreton 1988; Houdek et al.
2017; Houdek et al. 2019).

When dealing with S15, we similarly distinguish between three
different approaches: in the first approach, we fix β to 4.0 as done
by Nsamba et al. (2018). In the second approach, β is determined
using equation (10). Finally, we let β vary, solely requiring that β ≥
0. In all cases, we let α adjust freely, requiring that α ≤ 0, following
the arguments given above.

As regards the cases of K08 and S15 for which we let both
parameters adjust freely, we stress that this path is not commonly
taken in literature. This is because the sole physical justification for
K08 and S15 lies in the calibrated parameters. Indeed, as shown
below, K08 and S15 do not perform well, when no such calibration
has taken place. By allowing both parameters to adjust freely, we
thus are able to highlight the limitations of K08 and S15.

We, furthermore, investigate two different cases based on BG14:
in one case, we only include the cubic term, while we allow both
coefficients (a−1 and a3) to vary freely in the second approach.
In other words, we include both a one- and a two-term version of
BG14.

For comparison, we include the case where no surface correction
is taken into account. In the following, we refer to this as NoSC.

4 ECLI PSI NG BI NARI ES

Using AIMS, we have determined the stellar parameters of eight red
giant branch stars in the Kepler field: KIC 4054 905, KIC 4663 623,
KIC 5786 154, KIC 7037 405, KIC 8410 637, KIC 8430 105,
KIC 9540 226, and KIC 9970 396. All eight stars are members
of eclipsing and spectroscopic binaries, which allows for accurate
dynamical measurements of their masses and radii. This property
makes the investigated eight giants suitable benchmark stars for
asteroseismic analyses (e.g. Gaulme et al. 2016; Li et al. 2018).
We thus compare our results with the conclusions from dynamical
studies by Gaulme et al. (2016), Brogaard et al. (2018), and
Benbakoura et al. (in preparation). The observational constraints
are summarized in Table 2.

For all investigated nine treatments of the surface effect, the best-
fitting model, i.e. the model with highest posterior probability as
well as the median of the obtained posterior probability distributions
recover the correct masses and radii of most or all stars within
3 σ . This includes NoSC, i.e. the case where no surface correc-
tion relation has been implemented. KIC 4054 905 constitutes a
prominent exception: the attempt to model this star without any
surface correction relation fails to recover the correct mass and
radius within 10 σ , while all surface correction relations perform
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Table 2. Summary of the observational constraints that were employed to
model the eclipsing binaries investigated in this paper. This includes the
number of radial modes to which we refer as �n. The observed frequencies
were deduced using PBJAM or using the method presented by Gaulme et al.
(2009). The spectroscopic constraints on Teff, [Fe/H] and νmax stem from
Gaulme et al. (2016), Brogaard et al. (2018), Li et al. (2018), and Benbakoura
et al. (in preparation).

�n Teff [K] [Fe/H] νmax

KIC 4054 905 6 4790 ± 190 − 0.72 ± 0.31 48.15 ± 0.21
KIC 4663 623 7 4803 ± 91 0.16 ± 0.04 46.51 ± 2.34
KIC 5786 154 5 4747 ± 100 − 0.06 ± 0.06 29.75 ± 0.16
KIC 7037 405 5 4500 ± 80 − 0.27 ± 0.05 21.75 ± 0.14
KIC 8410 637 7 4699 ± 91 0.16 ± 0.05 46.00 ± 0.19
KIC 8430 105 8 5042 ± 68 − 0.49 ± 0.04 76.70 ± 0.57
KIC 9540 226 6 4662 ± 91 − 0.16 ± 0.08 27.88 ± 0.17
KIC 9970 396 6 4860 ± 80 − 0.35 ± 0.1 63.70 ± 0.16

Figure 1. Absolute differences between dynamically inferred stellar param-
eters and the results obtained from stellar models when employing different
surface correction relations. The differences are given in units of the standard
deviation of the differences, i.e. σM and σR include both the observational
errors and the uncertainty of the inferred model properties. The outlier, for
which deviations in both mass and radius exceed 10 σ , is associated with
KIC 4054 905.

well. These results are illustrated in Figs 1 and 2. Here, σ includes
the errors on the model parameters that are inferred from the MCMC
as well as the errors on the dynamically inferred parameters. In other
words, σ denotes the combination of errors that can be derived from
the law of propagation of errors.

Furthermore, we find that S15 systematically yields lower mass
and radius estimates than both K08 and BG14 do. NoSC and the one-
term correction by BG14 (case a) systematically yield higher mass
and radius estimates than the other approaches. These systematic
trends are also found for the clusters and thus reappear in Sections 5
and 6. Indeed, the analyses of the two clusters show the same relative
performance of the different surface corrections relations.

There is thus a scatter in the mass and radius estimates that
are obtained based on the different surface correction relations.
The lowest scatter is found for KIC 9970 396. On first glance,

Figure 2. Comparison between dynamically inferred stellar parameters
(black markers) and the results obtained from stellar models when employing
different surface correction relations. The markers show the location of the
best-fitting model, while the error bars correspond to 68 per cent credibility
intervals. The likelihood includes νmax. When repeating the analysis using
the medians rather than the best-fitting values, we reach the same quantitative
and qualitative conclusions. Note that NoSC dramatically overestimates
the mass and radius of KIC 4054 905, yielding values that lie closer to
KIC 4662 623. This is the outlier in Fig. 1.

Fig. 2 might suggest that a similarly low scatter is obtained for
KIC 4054 905. However, in reality, NoSC overestimates the mass
by more than 10 σ , as mentioned above, yielding mass and radius
estimates that more closely matches the dynamical constraints on
KIC 4663 623 than those on KIC 4054 905.

We partly ascribe the fact that all nine treatments of the surface ef-
fect perform similarly well to the included spectroscopic constraints
and the constraints on νmax. Thus, when no constraints on νmax

are taken into account, a slightly different picture emerges: when
equation (1) is not imposed, NoSC performs poorly, overestimating
the radius obtained by Gaulme et al. (2016) and Brogaard et al.
(2018) by up to a factor of two. The resulting errors in the inferred
masses or radii exceed 5 σ in six out of eight cases – reaching
60 σ for the radius of KIC 9970 396. Moreover, only the two-term
correction by BG14 (case b) does not have one or more outliers,
for which the error in either the mass or radius exceeds 3 σ . Indeed,
the two-term correction by BG14 (case b) recover the dynamical
constraints on all binaries within 2.4 σ . For most of the remaining
surface correction relations,4 KIC 8430 105 is one of the outliers.
However, we note that the power spectrum for KIC 8430 105 is
noisy and that the mode identification might be skewed due to the
influence of binarity and magnetic activity (cf. Magic & Weiss 2016;
Pérez Hernández et al. 2019, for further discussions on the influence
of magnetic activity on stellar oscillations).

In addition, when excluding νmax from the constraints and freely
adjusting both parameters related to K08 (case c), the inferred
surface effect is larger than the observed large frequency separation

4In this particular case, NoSC does very well, recovering the dynamical
constraints within 1 σ .
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for KIC 8410 637, KIC 8430 105, and KIC 9540 226. The surface
effect is even a substantial fraction of the observed νmax. Both the
uncorrected theoretical values for �ν and νmax are substantially
larger than the observed values. This highly un-physical behaviour
of K08 (case c) is likewise obtained for seven out of the nineteen
stars that enter the analyses of NGC 6819 in Section 5. We attribute
this behaviour to the fact that the physical justification for K08 solely
lies in the calibration of the involved parameters. Without sufficient
constraints on a and b in equation (5), a power-law description of
the surface effect becomes unreliable.

As shown by Ball & Gizon (2017) and Nsamba et al. (2018),
the use of solar calibrated values in K08 systematically shifts the
stellar parameter estimates when addressing other main-sequence
stars. Moreover, calibrating the involved parameters based on 3D
MHD simulations as suggested by Sonoi et al. (2015; equation 7)
has several caveats: first, current calibrations suffer from the use
of the gas �1 approximation, as discussed in the introduction.
Secondly, the calibration by Sonoi et al. (2015) does not take
deviations from solar metallicity into account (cf. Manchon et al.
2018; Jørgensen et al. 2019, who address this issue using 3D MHD
simulations). These points generally discourage from the use of
K08 and also apply to S15. Nevertheless, disregarding the case of
KIC 8430 105, all surface correction relations explored in this paper
perform equally well in recovering the global stellar mass and radius
of the considered eclipsing binaries. Neglecting the surface effect
altogether by not including a surface correction relation, however,
does not yield the correct stellar parameters. Indeed, we note that
NoSC generally tends to overestimate the stellar mass and radius
of the eclipsing binaries, while we have not spotted similarly clear
trends for the remaining treatments of the surface effect. To shed
more light on this issue, additional data points, i.e. more eclipsing
binaries, are needed.

Regarding the goodness of fit, we find several consistent trends.
The best-fitting models that were selected using the one-term
correction by BG14 (case a) and NoSC lead to higher reduced
χ2-values and BICs than any of the other treatments of the surface
effect do. For all eight stars, the best-fitting model with the lowest
reduced χ2- and BIC-value is found by either using the two-term
correction by BG14 (case b) or the free fit based on K08 (case c);
the associated scatter is higher for case c of K08. For all investigated
binaries, the two-term correction by BG14 (case b) thus results in
good fits to data and often yields better fits than the remaining
surface correction relations do in terms of the reduced χ2- and
BIC-value. We illustrate this in Fig. 3.

Since we are dealing with eclipsing binaries, accurate and precise
alternative observational constraints are available. Among other
parameters, the stellar radii have been well determined. We have
thus repeated the analysis, replacing the constraint on νmax with a
constraint on the stellar radius. We find that this greatly reduces
the scatter between the mass estimates obtained from the use
of different surface correction relations. By including the radius
into the observation constraints, we also reduce the mean absolute
error in the inferred properties for all treatments of the surface
effect. We illustrate this in Figs 4 and 5. Once again, this goes
to show the importance of additional (non-seismic) constraints in
asteroseismic analyses. The demonstrated improvement that arises
from including the radius into the likelihood is, furthermore, of
particular interest, since the upcoming third data release (DR3)
by Gaia (Gaia Collaboration 2016) will provide the community
with robust measurements of stellar radii. We note, however, that
NoSC still does not perform as well as any of the surface correction
relations do, even if we include the radius among the constraints.

Figure 3. Reduced χ2-values for all eight investigated eclipsing binaries
(cf. Equation 2). The labels on the abscissa indicate respective the KIC-
numbers. The likelihood includes νmax.

Figure 4. As Fig. 1, but employing the stellar radius rather than νmax in
the likelihood. The accumulation of models, for which (M − Mdyn)/σM ≈
3 and (R − Rdyn)/σR ≈ 0, is associated with KIC 7037 405, for which we
use the dynamical constraints by Brogaard et al. (2018). For these models,
much lower residuals are obtained when using the dynamical constraints by
Gaulme et al. (2016).

This underlines the vital role played by the treatment of the surface
effect.

As mentioned above, the employed constraints on the stellar
radius reduce the scatter between the inferred masses. To this end,
the constraints on the stellar radius do not help us much to further
discriminate between the different surface correction relations.
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4972 A. C. S. Jørgensen et al.

Figure 5. As Fig. 2, but employing the stellar radius rather than νmax in
the likelihood. Both the one-term correction of BG14 (case a) and NoSC
dramatically overestimates the mass KIC 4054 905, yielding a value that
lies closer to KIC 9970 396.

On the other hand, this result goes to show that we can easily
construct a likelihood that is not dominated by the bias introduced
by the employed surface correction relation. In this connection, it is
worth highlighting the consequences for the inferred properties of
KIC 7037 405. With the likelihood that includes the stellar radius,
all surface correction relations unanimously point towards a mass
of KIC 7037 405, which is in better agreement with the dynamical
measurements by Gaulme et al. (2016; 1.25 ± 0.03 M�) than with
the constraints by Brogaard et al. (2018; 1.17 ± 0.02 M�), despite
the fact that we use the constraints on the radius from Brogaard
et al. (2018). We note that this finding is, furthermore, in agreement
with other asteroseismic studies (cf. fig. 14 in Buldgen et al. 2019).
However, we also note that the discrepancy between our models
and the dynamical measurements by Brogaard et al. (2018) might
partly come down to the chosen input physics. The models, for
instance, follow a fixed relationship between the metal abundance
and the helium content (cf. Section 2.1), which might introduce
a bias. However, we are partly able to delve into this issue since
KIC 7037 405 also lies within the grid that was computed for
the analysis of NGC 6791 in Section 6. As mentioned above,
this grid employs a different value for �Zi/�Yi. We have thus
repeated the analysis using another relationship between Zi and
Yi. We find that we arrive at the same conclusion: our results
prefer the dynamical constraints by Gaulme et al. (2016) over
those of Brogaard et al. (2018). Moreover, we have repeated the
analysis, altering the constraints on [Fe/H]. This likewise leaves the
conclusion unaffected.

In so far as we believe that our models recover the correct
stellar structures, our analysis of KIC 7037 405 exemplifies how an
asteroseismic analysis is able to complement the classical methods
irrespective of the employed surface correction relation. On the
other hand, we note that surface correction relations do not account
for all physical inadequacies of stellar models but only deal with
the surface effect and that asteroseismic analyses may naturally
fail to deliver accurate stellar parameter estimates if the underlying

stellar models are incorrect (see e.g. Jørgensen et al. 2019; Rendle
et al. 2019, for a comparison of models that are based on different
physical assumptions).

It is worth mentioning that the best-fitting models, as well as the
mean of the associated posterior distributions, tend to systematically
underestimate the measured effective temperatures for all binaries.
Thus, the mean absolute deviation between measurements and
model predictions exceeds 100 K in all cases. This holds true
whether or not we introduce νmax or the radius as an additional
observational constraint.

As regards the goodness of fit, we obtain slightly higher values
for both the reduced χ2 and the BIC when including the radius in the
likelihood than shown in Fig. 3. While an independent constraint on
the stellar radius thus improves the agreement of the predicted stellar
mass with dynamical measurements, it leads to a slightly worse
recovery of the individual frequencies than when the individual
frequencies dominate the likelihood.

To further discriminate between the different treatments of the
surface effect, more samples are needed. We therefore turn to an
analysis of the open clusters NGC 6819 and NGC 6791 below.

5 N G C 6 8 1 9

Using AIMS and employing all nine treatments of the surface
effect listed in Table 1, we have derived stellar parameters for
19 RGB stars in the open cluster NGC 6819.5 We have adopted
non-seismic constraints from Handberg et al. (2017) and set
[Fe/H] = 0.02 ± 0.1 dex for all cluster members.

We computed the mean mass of the 19 RGB stars based on
each of the nine treatments of the surface effect. The results
are summarized in Fig. 6 and in Table 3. When repeating the
analysis without including νmax into the likelihood, all treatments
lead to similar mean masses and mass scatter to those obtained
with νmax. We note that the presented averages are taken over the
best-fitting values and weighted by the respective variance of the
associated posterior probability distribution. We also note that we
reach the same quantitative and qualitative conclusions if we repeat
the analysis using the medians rather than the best-fitting values.
The applicability of this procedure rests on several assumptions,
including the notion that the posterior probability distribution of
the stellar mass is well-described by a Gaussian. While this is a
good approximation for the vast majority of the stars presented in
this paper, we note that cases exist for which the posterior mass
distribution is less symmetric or even multimodal.

Thus, the mean mass of the cluster is estimated to be

M̄ =
∑N

i Mi/σ
2
i∑N

i 1/σ 2
i

, (12)

where Mi and σ i denote the best-fitting value of the mass and the
corresponding estimate of the standard deviation for each of the N
samples. Due to the low number of samples, the uncertainty on the
mean has been computed by following the procedure outlined by
Chaplin et al. (1998; see also Miglio et al. 2012). When dealing
with small sample sizes, the estimate of the standard deviation that
follows from the sample might be biased and often underestimates
the standard deviation of the underlying normally distributed

5KIC 4937 576, KIC 5023 732, KIC 5023 931, KIC 5024 240, KIC 5024 297,
KIC 5024 312, KIC 5024 405, KIC 5024 512, KIC 5024 583, KIC 5111 718,
KIC 5111 940, KIC 5112 072, KIC 5112 361, KIC 5112 734, KIC 5112 744,
KIC 5112 880, KIC 5112 948, KIC 5113 041, and KIC 5113 441.
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Figure 6. The mean mass and age obtained from nine different treatments
of the surface effect using equations (12) and (13) for NGC 6819. The
orange shaded area indicates to the 68 per cent credibility interval of the
asteroseismic constraints by Handberg et al. (2017). The corresponding
mean is marked by the dotted black line. We note that the constraints obtained
by Handberg et al. (2017) are likewise obtained from an asteroseismic study.
Classical measurements by Sandquist et al. (2013) and Brogaard et al. (2015)
lead to a broader confidence interval that agrees well with the results obtained
based on all surface correction relations (1.55 ± 0.06 M�). These constraints
are shown with the shaded yellow area. The corresponding mean is indicated
with the dash-dotted line. The likelihood includes νmax.

Table 3. Summary of the inferred mean mass and age
(τ ) of the RGB stars in NGC 6819 based on the different
surface correction relations that are investigated in this
paper. The likelihood includes νmax.

Surf. corr. 〈M〉 ± σM̄ 〈τ 〉 ± στ̄ [Myr]

K08 (a) 1.610 ± 0.023 2045 ± 110
K08 (b) 1.600 ± 0.020 2077 ± 102
K08 (c) 1.562 ± 0.021 2260 ± 108
S15 (a) 1.574 ± 0.018 2164 ± 106
S15 (b) 1.578 ± 0.0182 2187 ± 103
S15 (c) 1.595 ± 0.018 2098 ± 98
BG14 (a) 1.644 ± 0.029 1935 ± 110
BG14 (b) 1.609 ± 0.018 2084 ± 94
NoSC (None) 1.763 ± 0.027 1337 ± 70

population. To account for this, we compute the uncertainty from
the unbiased estimate of the variance from the sample and apply a
correction factor t[N − 1] drawn from the Student’s t distribution
with N − 1 degrees of freedom:

σM̄ = t[N − 1]

√∑N

i (Mi − M̄)/σ 2
i

(N − 1)
∑N

i 1/σ 2
i

. (13)

In the present case, the correction factor, i.e. t[N − 1], is of the
order of unity, largely leaving the uncertainties unaltered. We note
that equation (13) yields larger uncertainties than what would
be obtained from the law of propagation of error based on the
uncertainties on the samples alone. This implies that the scatter
of the samples are not dominated by random errors, which might

imply that AIMS underestimates the true errors on the sampled stellar
parameters – at least, within the Gaussian approximation. This
circumstance might reflect the fact that the grid is 2D, as additional
free parameters might lead to broader posterior distributions of
the sampled properties. As specified in Section 2.1, we thus
use a fixed mixing length parameter, fixed parameters associated
with over and undershooting, and a fixed relation between the
initial helium abundance and the initial abundance of heavy
elements.

Based on dynamical measurements of eclipsing binaries by
Sandquist et al. (2013), Brogaard et al. (2015) determine the mean
mass of the RGB stars in the NGC 6819 to be 1.55 ± 0.06 M�. Using
asteroseismic scaling relations and empirical corrections for �ν and
νmax, Handberg et al. (2017) finds the mean mass of RGB stars in the
cluster to be 1.61 ± 0.02 M� (see also e.g. Miglio et al. 2012). We
note that only the models for which no surface correction relation
is taken into account fail to fall within one standard deviation of
the mean evaluated by either Brogaard et al. (2015) or Handberg
et al. (2017). This holds true with and without including νmax into
the likelihood.

This being said, such a direct comparison with the mean cluster
masses of RGB stars from Brogaard et al. (2015) and Handberg et al.
(2017) might be slightly skewed since our analysis only includes 19
stars. Our results may thus be subject to a selection bias. Instead, we
note that Handberg et al. (2017) also supply mass estimates for the
individual members of the cluster, yielding a weighted mean mass
of 1.61 ± 0.01 M� for the considered 19 giants. With the exception
of NoSC, we find that all treatments of the surface effect yield
parameter estimates that agree with this result within 2 σ whether
or not we include νmax in the likelihood. Moreover, on a star by
star basis, all models recover the observational constraints on the
effective temperature within 100 K irrespective of the employed
surface correction relation. Again, this statement does not apply
to NoSC but does remain valid whether or not we include νmax in
the likelihood. We, furthermore, note that we find no obvious trends
between the inferred mass of the individual cluster members and the
associated value of νmax when including the latter in the likelihood.
This holds true for all nine treatments of the surface effect, and it
also holds true for the stars in NGC 6791. Moreover, we find the
mass scatter to be seemingly uniform as a function of νmax, i.e.
along the RGB.

As can be seen from Fig. 6, the different treatments of the surface
effect that employ S15 tend to lead to lower average masses than
the two-term surface correction relation by BG14 does. This is
consistent with our analysis of the eclipsing binaries, where S15
is likewise found to underestimate the classical constraints on the
stellar masses. According to a differential study by Nsamba et al.
(2018), this behaviour is not found for main-sequence stars, where
S15 and BG14 on average yield equally robust mass and age
estimates. The fact that the cases a and b of S15 perform better
for main-sequence stars than for more evolved stars presumably
reflects the fact that the involved parameters are calibrated based on
a study that primarily includes patched models of main-sequence
stars. Thus, Sonoi et al. (2015) solely include one red giant branch
star in their calibration sample.

As regards S15 we, furthermore, note that we have excluded
KIC 5112 880 from the sample when treating α and β as free
parameters (case c). This is because case c of S15 yields an age
estimate for this star that exceeded the age of the Universe by a
factor of two. Once again, this behaviour might reflect the fact
that there is no physical justification for S15 beyond the calibrated
surface correction relation parameters.
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4974 A. C. S. Jørgensen et al.

Figure 7. The mean mass and distance modulus obtained from nine
different treatments of the surface effect for NGC 6819. The error bars
on the distance modulus correspond to the sample standard deviation and
thus reflect the scatter of the individual distance moduli. The black marker
summarizes the results in Handberg et al. (2017) based on the same 19 stars.
The yellow shaded area corresponds to the 68 per cent credibility interval
for the classical constraints on the mass and distance modulus presented by
Sandquist et al. (2013) and Brogaard et al. (2015). The likelihood includes
νmax.

From Fig. 6, it is also apparent that the discrepancies in the
estimated mean stellar mass translate into substantial systematic
offsets in the estimated mean age of the stars: excluding the case
where the surface effect is left unaccounted for the choice for the
treatment of the surface effect alone affects the estimated age of the
cluster by up to 17 per cent. As discussed in Section 2.2, tighter
non-seismic constraints might lift degeneracies and hereby partly
mend but not eliminate this issue. The obtained systematic offsets
thus illustrate the vital role that a proper understanding of the surface
effect, i.e. superadiabatic convection plays for galactic archaeology.

5.1 Distance modulus

To investigate how the treatment of the surface effect alters other
inferred physical properties of the cluster, we have computed the
apparent distance modulus, (m − M)V, of NGC 6819 based on
the prescription by Torres (2010). For this purpose, we use the V-
band magnitudes by Milliman et al. (2014) in combination with the
bolometric corrections by Casagrande & VandenBerg (2014).

In Fig. 7, we compare the obtained results with classical mea-
surements by Sandquist et al. (2013) and Brogaard et al. (2015),
according to whom the apparent distance modulus and mean mass
of the RGB stars in the cluster are 12.42 ± 0.07 and 1.55 ± 0.06 M�,
respectively. As can be seen from the figure, the influence of
the treatment of the surface effect on the distance modulus is as
pronounced as its influence on the age and mass estimates. Indeed,
the spread of obtained mean apparent distance moduli are similar
to the internal scatter.

We find that all surface correction relations recover the mean
distance modulus of the cluster within 1 σ whether or not we include
νmax in the likelihood.

Figure 8. As Fig. 6, but for NGC 6791. Here, we compare with the results
listed in Brogaard et al. (2012). The horizontal dashed line and the yellow
shaded horizontal area indicate an age estimate based on isochrones.

Based on the same 19 giants, Handberg et al. (2017) finds the
apparent distance modulus of NGC 6819 to be 12.43 ± 0.01, which
likewise agrees with the results presented by Sandquist et al. (2013)
and Brogaard et al. (2015) within 1 σ . Notably, all the investigated
treatments of the surface effect, furthermore, recover the quoted
distance modulus by Handberg et al. (2017) within 2 σ – again this
holds true with and without constraints on νmax.

On a star by star basis, we find the mass to be correlated with the
attributed distance modulus. We thus find that the stars that have
been assigned a lower mass are also assigned a lower distance
modulus. We ascribe this behaviour to the correlation between
seismically inferred masses and radii. The described correlation
between the mass and distance modulus is observed with and
without constraints on νmax. We address this issue further in
Section 6, where we deal with NGC 6791.

6 N G C 6 7 9 1

In this section, we present an analysis of 30 red giants6 in the
open cluster NGC 6791 to further validate and extend upon the
conclusions drawn in Section 5. Based on Brogaard et al. (2012),
we set [Fe/H] = 0.29 ± 0.1 dex. Non-seismic constraints were
adopted from Basu et al. (2011).

As for NGC 6819, we have computed the mean mass for the
cluster based on the output from AIMS for all 30 considered
members. We have repeated this for all nine surface correction
relations in Table 1. The results are summarized in Fig. 8 as well
as in Table 4. The figure includes an estimate for the absolute mass
of stars on the lower red giant branch by Brogaard et al. (2012;

6KIC 2435 987, KIC 2436 688, KIC 2437 270, KIC 2437 402, KIC 2437 972,
KIC 2438 140, KIC 2569 618, KIC 2570 244, KIC 2436 097, KIC 2437 653,
KIC 2437 933, KIC 2437 976, KIC 2438 333, KIC 2570 094, KIC 2436 540,
KIC 2436 818, KIC 2437 240, KIC 2437 488, KIC 2437 957, KIC 2438 038,
KIC 2570 172, KIC 2569 360, KIC 2437 816, KIC 2436 824, KIC 2436 814,
KIC 2437 444, KIC 2437 507, KIC 2436 900, KIC 2436 209, and
KIC 2436 332.
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Table 4. Summary of the inferred mean mass and age
(τ ) of the RGB stars in NGC 6791 based on the different
surface correction relations that are investigated in this
paper. The likelihood includes νmax.

Surf. corr. 〈M〉 ± σM̄ 〈τ 〉 ± στ̄ [Myr]

K08 (a) 1.161 ± 0.011 7157 ± 254
K08 (b) 1.170 ± 0.010 6893 ± 219
K08 (c) 1.082 ± 0.008 9530 ± 300
S15 (a) 1.094 ± 0.010 8930 ± 340
S15 (b) 1.101 ± 0.009 8834 ± 305
S15 (c) 1.110 ± 0.012 8141 ± 411
BG14 (a) 1.236 ± 0.014 5466 ± 227
BG14 (b) 1.126 ± 0.010 8122 ± 300
NoSC (None) 1.292 ± 0.023 4000 ± 252

1.15 ± 0.02 M�) as well as an age estimate (8.3 ± 0.3Gyr) based
on isochrones from the same paper. While the results by Brogaard
et al. (2012) are based on an analysis of eclipsing binaries, we
note that the cited age estimate is model dependent. As discussed
in Section 3.2 of the paper by Brogaard et al. (2012), the assumed
abundances of different elements and the treatment of heavy element
diffusion lead to additional systematic and statistical errors on the
age estimate. Analogous to the case of NGC 6819 we, furthermore,
note that the mass estimate from our analysis might be subject to a
selection bias. After all, we only consider 30 stars. We also note that
analyses by other authors yield slightly different mass estimates for
the red giant branch stars in the cluster. This includes asteroseismic
analyses by Basu et al. (2011) and Miglio et al. (2012) – that is,
1.20 ± 0.01 M� and 1.23 ± 0.02 M�, respectively. This being said,
both Basu et al. (2011) and Miglio et al. (2012) have computed their
mass estimates directly from the scaling relations. Going beyond
such scaling relations by using stellar models would shift the mass
estimates and potentially improve the agreement with the values
obtained from eclipsing binaries by Brogaard et al. (2012). Thus,
the asteroseismic analysis by McKeever et al. (2019) based on stellar
models yields a mean mass estimate for the red giant branch stars
in the cluster of 1.15 ± 0.01 M�, which closely matches that by
Brogaard et al. (2012). This latter analysis notably also employs the
two-term correction by BG14 (case b) but includes higher degree
modes (� = 2).

In short, the statistical errors of the reference age in Fig. 8 might
be underestimated, while the reference mass might be subject to
systematic errors. Taking these circumstances into account, we note
that the majority of the investigated surface correction relations
lead to mass and age estimates that agree reasonably well with
the literature. The case without any surface correction is clearly an
example of an exception to this statement.

By comparing Fig. 8 to Fig. 6 in Section 5, we note that the
relative performance of the different surface correction relations is
the same for both clusters. In other words, the ordering from the
lowest to the highest mean mass or age is the same for both clusters.
For instance, NoSC yields much higher masses and much lower
ages and the remaining eight treatments of the surface effect do.
The same conclusion was drawn from the analysis of the eclipsing
binaries in Section 4. This underlines that the use of improper
surface correction relations does, indeed, lead to systematic errors
in the obtained global parameters.

As can, furthermore, be seen from the error bars in Fig. 8, the
one-term correction by BG14 (case a) and the case without any
surface correction relation yield broader mass distributions than the
remaining seven treatments of the surface effect do – the same is

Figure 9. Mass distributions for six of the nine treatments of the surface
effect discussed in this paper for NGC 6791. The remaining three approaches
were excluded to avoid that the plot became too crowded. For each
histogram, we employ six bins. These bins are therefore broader in mass for
the cases with larger mass scatter. The likelihood includes νmax.

found for NGC 6819, although to a lesser extent. Since we are
dealing with a cluster, this larger mass scatter indicates that the one-
term correction by BG14 (case a) and the case without any surface
correction relation are less reliable than the other approaches. We
further illustrate this in Fig. 9.

As in the case of NGC 6819, we have computed the distance
modulus of the cluster. For this purpose, we used V-band magnitudes
by Basu et al. (2011) in combination with the bolometric corrections
by Casagrande & VandenBerg (2014). With the exceptions of the
one-term correction by BG14 (case a), cases a and b of K08, and
NoSC, all treatments of the surface effect agree within 2 σ with
the value obtained from the study of eclipsing binaries by Brogaard
et al. (2012) (13.51 ± 0.06). We quantify this result in Fig. 10. Once
again, we note that the one-term correction by BG14 (case a) and
NoSC perform worse than the remaining seven procedures. This
notion is consistent with the results obtained in both Sections 4 and
5. Only the two-term correction by BG14 recovers the stellar mass
within 1 σ in addition to yielding a mean distance modulus that is
consistent with Brogaard et al. (2012) within 2 σ .

While the inferred effective temperatures from AIMS closely
match spectroscopic constraints in the case of NGC 6819, the in-
ferred effective temperatures are too high for most cluster members
in NGC 6791 irrespective of how we treat the surface effect. Again,
we find that the one-term correction by BG14 and NoSC lead to
the worst goodness-of-fit scores, indicating that these approaches
do not recover observations well. Meanwhile, in several cases, the
other surface corrections lead to slight overfitting. We illustrate and
quantify the discussed features in Fig. 11.

On a star by star basis, we find the mass estimates to be
correlated with the attributed distance modulus, as mentioned in
Section 5. We, furthermore, find the mass to be correlated with
the offset between the effective temperature of the model and the
spectroscopic constraint on Teff. We thus find stars that are assigned
a lower mass to yield a higher offset in Teff. There is, meanwhile,
no clear correlation between the offset in Teff and the goodness of
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Figure 10. As Fig. 7, but for NGC 6791. Here, we compare with the mass
interval and the constraints on the distance modulus provided by Brogaard
et al. (2012).

Figure 11. The reduced χ2 for all stars in NGC 6791 as a function of
the deviation between the measured and predicted effective temperature.
Positive values for the temperature difference indicate that the spectroscopic
constraint on the effective temperature is higher than the inferred value. The
likelihood includes νmax.

fit, if we solely consider models that share the same treatment of
the surface correction relation. Overall, however, such a correlation
exists, since the surface correction relations that yield the highest
masses also lead to higher χ2- and BIC-values – that is, case a of
BG14 and NoSC.

In this connection, we note that the evaluated Teff is sensitive to
the constraint on [Fe/H]. The inferred values of Teff and thereby
of the distance moduli can thus be improved by changing the

imposed metallicity of the cluster: changing the constraint on [Fe/H]
by 0.1 dex increases the inferred temperature by roughly 50 K.
However, we note that the mass and age estimates are likewise
sensitive to this observational constraint. We can thus increase the
mean mass and decrease the mean age estimates by assuming
a systematically lower metallicity for the cluster members. An
increase in the imposed metallicity by 0.1 dex thus decreases the
mean mass estimate by roughly 0.02 M� for all surface correction
relations. In other words, in the presented scenario, the improvement
of the distance modulus that is achieved by increasing the metallicity
comes at the cost of lowering the mean mass, which for most
surface correction relations increases the tension with the dynamical
constraints by Brogaard et al. (2012).

In the same manner, as regards the distance modulus, we can
improve the agreement with Brogaard et al. (2012) by including
alpha enrichment for all models presented in this paper, [α/Fe] = 0.0
(cf. Section 2.1). We thus repeated the analysis adopting [α/Fe] =
0.1. In this case, we find that all treatments of the surface effect
but the one-term correction by BG14 (case a) and NoSC recover
the mean distance modulus by Brogaard et al. (2012) within 2 σ .
However, once again, this comes at the cost of lower mean masses
and higher mean ages. The mean mass thus decreases by roughly
0.01–0.03 M�.

The effective temperature can also be shifted by choosing a
different model atmosphere. To investigate this, we have repeated
the analysis, substituting the semi-empirical model atmospheres by
Vernazza, Avrett & Loeser (1981) with those by Krishna Swamy
(1966). Doing so, we find that the offset in Teff increases by roughly
50 K, leading to even higher model temperatures. As a result, none
of the investigated treatments of the surface effect yields mean
distance moduli that lie within 2 σ of the constraints by Brogaard
et al. (2012) when employing the model atmospheres by Krishna
Swamy (1966). Moreover, when using the model atmospheres by
Krishna Swamy (1966), only the cases a and b of S15 and case c of
K08 lie within 1 σ of the mass estimate by Brogaard et al. (2012).

7 D ISCUSSION

Throughout the presented analysis of the eclipsing binaries,
NGC 6819 and NGC 6791, the two-term correction by BG14
performs well. As argued by Ball & Gizon (2014) based on Gough
(1990), the underlying functional form is physically motivated,
which may explain the success of this approach. Encouragingly,
we furthermore find that the best-fitting values of both parame-
ters involved in BG14 (a−1 and a3) are strongly correlated with
the global stellar parameters, predominantly log g, of the best-
fitting models. Thus, the inferred surface effect evolves in a
predictable manner through the HR diagram. This is illustrated
in Fig. 12.

As regards K08 and S15, we likewise find the involved parameters
(a, b, α, and β) to be correlated with the global stellar parameters,
when a, b, α, and β are kept free.

We note that the discussed correlations partly reflect the intrinsic
correlations between the global stellar parameters, say, between
Teff and log g. These intrinsic correlations come about as red giant
branch stars in any given cluster will share similar properties –
indeed, this notion underlies the analysis presented in the previous
sections. In other words, the intrinsic correlations reflect a selection
bias. Notably, repeating the analysis solely based on a single cluster,
the results occasionally point towards correlations between the free
surface correction relation parameters and [Fe/H]. If this result were
to be genuine, it would be quite intriguing, since such correlations
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Figure 12. Correlations between the surface correction relation parameters
of BG14 (case b) and the global stellar parameters of the stars in NGC 6819
and NGC 6791 in combination with the eight eclipsing binaries in Section 4.
The correlation matrix has been computed based on the best-fitting models of
each star. The analysis thus includes 57 red giant branch stars. The likelihood
includes νmax.

are not taken into account by equations (6), (7), (9), and (10).
However, these correlations are washed away when including more
data. This is exemplified in Fig. 13: based on NGC 6819 alone, a
seems to be strongly correlated with log g, Teff, and [Fe/H] when
considering case b of K08 (lower panel). The picture changes when
including an additional cluster and the eclipsing binaries (upper
panel). Weaker correlations with Teff and [Fe/H] are obtained. This
is not to say that the metallicity might not play a role for the
parameters involved in the surface correlation relations. However,
while correlations between the surface correction relation parame-
ters and the global stellar parameters might express dependencies on
these global parameters, these correlations also indirectly express a
selection bias.

Moreover, our results suggest that equations (6), (9), and (10)
systematically underestimate the best-fitting values of a, α, and
β, while equation (7) overestimates b. This was to be anticipated
as Sonoi et al. (2015) have calibrated these relations mainly
based on main-sequence stars for which Teff lies above 6000 K.
The population that is studied in the present paper thus strongly
differs from that based on which Sonoi et al. (2015) derived their
expressions for a, b, α, and β.

In order to further quantify these statements, one may attempt
to calibrate the parameters in K08 and S15 based on a large
sample of well-constrained stars, such as eclipsing binaries. The
use of such benchmark targets allows adjusting the parameters
based on well-established non-seismic constraints (cf. Fig. 5).
However, since the obtained values may, to a large extent, reflect
other input physics, such as the chosen T(τ ) relation, and since
there is no physical justification for the functional form of K08
and S15, a calibration of these surface correction relations is
not guaranteed to be widely applicable. Indeed, as discussed
by Jørgensen et al. (2019), any attempt to establish a global
calibration of K08 and S15 may be subject to a selection bias.
In other words, the parameters of surface correction relations
encode physical inadequacies of the stellar models, and they thus
reflect the associated input physics as well as the global stellar
parameters, since the mentioned inadequacies are sensitive to
these properties. It thus stands to reason that a proper calibration
of K08 and S15 must be performed based on a suitable set of

Figure 13. As Fig. 12, but for K08 (b). The upper panel is based on
the global stellar parameters of the stars in NGC 6819 and NGC 6791
in combination with the eight eclipsing binaries in Section 4. For the lower
panel, we have only included the stars from NGC 6819.

benchmark stars every time the input physics is significantly altered,
and every time a yet uncovered region of the HR diagram is
explored.

While we do not dive further into the coefficients and exponents
that enter the surface correction relations, it is worth taking a closer
look at the consequences of using the surface correction relations
for the predicted physical stellar properties. We thus note that the
relative shift in the large frequency separation is constant across
all values of νmax. This is illustrated in Fig. 14 (see also Rodrigues
et al. 2017). For nearly all cases, the large separation is lower when
including a correction of the surface effect.7

Case c of K08 constitutes a notable exception to this rule and
deviates by one order of magnitude in the size of the relative shift
in �ν from the other surface correction relations. The fact that
this correction significantly differs in the predicted surface effect
is consistent with the notion that case c of K08 leads to lower
mass estimates than the remaining surface correction relations do,
including the cases a and b of K08, as shown in Figs 6 and 8.

7The very few exceptions all employ the one- or two-term correction by
BG14. Note that we indirectly enforced this behaviour for K08 and S15 by
imposing priors on the involved parameters (cf. Table 1).
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Figure 14. Relative difference in the large frequency separation between
that obtained from corrected frequencies (�νcorr) and that obtained from
uncorrected frequencies (�νmod). The plot is based on all 57 red giant
branch stars presented in this paper. One outlier with a relative difference
below 10−3 were removed from the plot for clarity – it used case a of K08.
We note that �νcorr < �νmod in nearly all cases. Exceptions only occur for
BG14 and have been indicated with open symbols. The averages constitutes
unweighted means taken over the model frequencies that correspond to the
observed modes.

8 C O N C L U S I O N

In this paper, we perform asteroseismic analyses of several red
giant branch stars imposing different surface correction relations
(cf. Kjeldsen et al. 2008; Ball & Gizon 2014; Sonoi et al. 2015).
We demonstrate that the use of each of these surface correction
relations biases the inferred stellar properties. In accordance with the
studies of main-sequence stars by Ball & Gizon (2017) and Nsamba
et al. (2018), our results thus show that the use of different surface
correction relations leads to systematic offsets in the derived global
stellar properties, including stellar ages, masses, and distances.

In Section 4, we present an asteroseismic analysis of eight
giants that are situated in eclipsing binaries. From comparisons
with the results of dynamical studies, we conclude that we are
able to recover the global stellar parameters equally well inde-
pendent of the employed surface correction relation, if we impose
sufficiently informative non-seismic constraints. Even with such
non-seismic constraints, however, there is a scatter between the
inferred stellar properties that are favoured by the different surface
correction relations. Throughout most of this paper, we ensure
that the constraints on the individual frequencies dominate the
likelihood in order to discriminate between the different surface
correction relations. Meanwhile, we also demonstrate how the use
of different additional constraints that complement the individual
frequencies reduces the impact of the chosen surface correction
relation. When including dynamical constraints on the stellar radius
or constraints on νmax, most treatments of the surface effect match
the dynamical constraints on the masses of the binary members
within 2 σ and 3 σ , respectively. Without any of these constraints,
however, only the two-term correction by Ball & Gizon (2014) is
able to recover the dynamical measurements of the stellar masses

and radii for all stars in the sample within 3 σ . Especially, the
approach of ignoring the surface effect altogether yields poor
results. Moreover, in several cases, the power-law description by
Kjeldsen et al. (2008) leads to un-physically large frequency offsets
in the un-corrected frequencies. We attribute this behaviour to
the fact that there is no physical justification for the power-law
correction beyond the calibration of the involved coefficient and
exponent.

Based on our analysis of eclipsing binaries, we thus generally
recommend including available non-seismic constraints in aster-
oseismic analyses to lower any systematic errors that might be
introduced by the chosen treatment of the surface effect. Surveys
and missions, such as Gaia, provide such constraints.

In Sections 5 and 6, we address a large sample of red giant branch
stars from two open clusters and investigate the attributed mean
properties of the populations. Through this analysis, we illustrate
that the use of different surface correction relations biases mass,
age, and distance estimates for the cluster members. In other words,
improper treatments of the surface effect lead to systematic errors
in the obtained global parameters. In this connection, we note
that the different surface correction relations perform in the same
manner relative to each other for both clusters. For instance, for
both clusters, the one-term correction relation by Ball & Gizon
(2014) yields higher mean mass and lower mean age estimates than
the remaining surface correction relations do. Furthermore, when
using the surface correction relation from Sonoi et al. (2015), one
on average obtains lower mass estimates than when employing the
two-term correction by Ball & Gizon (2014). We also note that the
obtained results are inconsistent with existing constraints on the
mass and age of the clusters when no surface correction is imposed.
These conclusions are consistent with our analysis of the eclipsing
binaries in Section 4.

Finally, we illustrate that the attempt to calibrate a surface
correction relation based on a sample of target stars introduces
correlations in the derived coefficients and exponents, reflecting
the underlying sample. We note that this agrees with the results
obtained by Jørgensen et al. (2019), who show that the underlying
sample leads to a selection bias. In combination with the results
presented by Jørgensen et al. (2019), our results thus discourage
from the use of calibrated surface correction relations in connection
with targets that do not closely resemble the stars, based on which
the relations were calibrated. Overall, our results are thus not in
favour of using the surface correction relations by Kjeldsen et al.
(2008) and Sonoi et al. (2015) without a proper calibration of the
parameters involved. Such a calibration must be based on the input
physics of the employed models as well as the global parameters of
the target star.

The surface correction relation by Ball & Gizon (2014), on the
other hand, does not rely on any such calibration. Nevertheless,
our results discourage from the use of the one-term correction
by Ball & Gizon (2014), since the use of this surface correction
relation does not recover the correct stellar properties and leads
to models with a poor goodness-of-fit score. Moreover, in the
presented analysis of the two clusters, the one-term correction by
Ball & Gizon (2014) leads to the largest mass scatter among the
investigated surface correction relations. This finding indicates that
the one-term correction by Ball & Gizon (2014) is less reliable
than the other surface correction relations. On the other hand, the
two-term correction by Ball & Gizon (2014) performs very well
throughout the analysis presented in this paper. It recovers the
classical constraints on the binaries and both clusters, and it leads
to models with an excellent goodness-of-fit score.
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Neglecting the surface effect altogether is demonstrably not a
viable strategy, as it significantly skews the obtained estimates for
the global stellar parameters. When addressing the binary members
in Section 4, the approach of neglecting the surface effect altogether
thus yields parameter estimates that strongly deviate from the
dynamical constraints whether or not we include additional (non-
seismic) constraint to complement the individual frequencies. This
approach also leads to larger mass scatter on a star by star basis
when addressing the two clusters.

The surface effect refers to a frequency offset that partly arises
from an incomplete description of the outermost superadiabatic lay-
ers of stars with convective envelopes. When addressing the surface
effect, it is therefore worth noting that the underlying structural
shortcomings affect the outer boundary conditions for the evaluated
interior equilibrium structure (e.g. Kippenhahn, Weigert & Weiss
2012). As a result, the surface effect is a symptom of a model
inadequacy that also affects the predicted stellar evolution tracks.
This is demonstrated by, e.g. Mosumgaard et al. (2020) based on
3D magnetohydrodynamic simulations by Magic et al. (2013) and
based on the method by Jørgensen et al. (2018). Surface correction
relations do not account for such changes in the global stellar
parameters. In other words, surface correction relations do not deal
with all aspects that are associated with the structural shortcomings
that give rise to the surface effect. However, to address this issue,
one needs to go beyond some of the assumptions that enter state-of-
the-art stellar models as shown by, e.g. Jørgensen et al. (2018) and
(Mosumgaard et al. 2018). This is beyond the scope of the present
paper. In this paper, we rather demonstrate that the correct treatment
of the surface effect is crucial for the outcome of asteroseismic
analyses when employing state-of-the-art stellar evolution codes.
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N OT E A D D E D IN PRO O F

In connection with the discussion of Fig. 10, we computed the
mean distance moduli for all nine treatments of the surface effect
based on the spectroscopic values for the effective temperature
in combination with the stellar radii inferred by modelling. More
specifically, we used the stellar radii from the models that enter Fig.
10. We did so to further substantiate that the offset in the distance
modulus is related to the mismatch in the effective temperature.
Indeed, in this scenario, all nine treatments, except for case c of
K08 and NoSC, lie within 1 standard deviation of the constraints
by Brogaard et al. (2012).
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