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ABSTRACT
Since the CoRoT and Kepler missions, the availability of high-quality seismic spectra for
red giants has made them the standard clocks and rulers for Galactic Archeology. With the
expected excellent data from the TESS and PLATO missions, red giants will again play a key
role in Galactic studies and stellar physics, thanks to the precise masses and radii determined
by asteroseismology. The determination of these quantities is often based on so-called scaling
laws, which have been used extensively for main-sequence stars. We show how the SOLA
inversion technique can provide robust determinations of the mean density of red giants within
1 per cent of the real value, using only radial oscillations. Combined with radii determinations
from Gaia of around 2 per cent precision, this approach provides robust, less model-dependent
masses with an error lower than 10 per cent. It will improve age determinations, helping to
accurately dissect the Galactic structure and history. We present results on artificial data of
standard models, models including an extended atmosphere from averaged 3D simulations
and non-adiabatic frequency calculations to test surface effects, and on eclipsing binaries. We
show that the inversions provide very robust mean density estimates, using at best seismic
information. However, we also show that a distinction between red-giant branch and red-
clump stars is required to determine a reliable estimate of the mean density. The stability of
the inversion enables an implementation in automated pipelines, making it suitable for large
samples of stars.

Key words: stars: evolution – stars: fundamental parameters – stars: solar type – stars: interi-
ors – stars: oscillations.

1 IN T RO D U C T I O N

Red giants play a key role in stellar physics. Since the detection
of mixed modes in their oscillation spectra (De Ridder et al. 2009)
thanks to the CoRoT (Baglin et al. 2009) and Kepler (Borucki et al.
2010) missions, they are at the origin of multiple questions on the
reliability of our depiction of stellar structure and evolution (Mosser
et al. 2012; Deheuvels et al. 2014). The availability of thousands
of high-quality seismic spectra for these stars led to their use as
the standard clocks and rulers (Miglio et al. 2015b) for Galactic
Archeology (Miglio et al. 2015a; Anders et al. 2017a). Today, they
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are used as tracers of the structure and chemical evolution of our
Galaxy (Anders et al. 2017b). New accurate data for these stars
are also expected to be delivered by the TESS and PLATO (Rauer
et al. 2014) missions, which will play a key role in Galactic studies
(Miglio et al. 2017). These successes originate from the ability of
asteroseismology to provide precise masses and radii for a large
number of stars. The seismic determination of these quantities is
often based on so-called scaling laws, which have also been used
extensively for main-sequence stars.

However, while the precision of these determinations is excel-
lent, due to the high precision of the space-based photometry data,
their accuracy is far from perfect. Multiple studies (Brogaard et al.
2016; Gaulme et al. 2016; Rodrigues et al. 2017; Viani et al. 2017;
Brogaard et al. 2018) have shown that they could lead to inaccurate
results. From a physical point of view, their limited accuracy is not
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surprising as they do not fully exploit the information contained
in the seismic spectra. Therefore, providing a more robust way of
determining the mean density of the observed targets using seis-
mology is required so that, using constraints from the second Gaia
data release, more accurate masses can be determined for thousands
of stars. These accurate masses will help with dissecting the struc-
ture of the Galaxy, thus providing new insights on its evolution and
formation history. In addition to this potential, the determination of
accurate fundamental parameters of red giants in stellar clusters is
also crucial to constrain the mass-loss rate on the red giant branch,
a still uncertain key phenomenon of stellar evolution (Miglio et al.
2012; Handberg et al. 2017).

In this study, we will show how the adaptation of the SOLA in-
version technique for the mean density developed by Reese et al.
(2012) used on the radial oscillations of red giant stars can provide
more robust determinations of the mean density than values ob-
tained from the fitting of the average large frequency separation or
the usual scaling laws. In Section 2, we briefly recall the principles
of the inversion techniques. In Section 3, we test the inversion in
various numerical exercises, using artificial targets on the red giant
branch (hereafter denoted RGB), in the red clump, and an RGB
target including an averaged 3D atmosphere model for which the
frequencies are computed using adiabatic and non-adiabatic oscil-
lation codes to test various surface effect correction. In Section 4,
we apply our method to a subsample of eclipsing binaries studied
by Gaulme et al. (2016) and Brogaard et al. (2018). This is then
followed by a conclusion.

2 TH E I N V E R S I O N T E C H N I QU E

The inversion procedure used to obtain the mean density is that of
Reese et al. (2012). We only briefly recall a few specific aspects of
the method for the sake of clarity.

The goal of the approach is to determine through the SOLA inver-
sion technique (Pijpers & Thompson 1994) an estimate of the mean
density of a given observed star using the linear integral structural
relations between individual relative frequency differences and cor-
rections of thermodynamic quantities such as density, ρ, the squared
adiabatic sound speed, c2 or the adiabatic exponent, �1 = ∂ ln P

∂ ln ρ
|S ,

with P the pressure and S the entropy (Dziembowski, Pamyatnykh
& Sienkiewicz 1990; Gough & Thompson 1991). This can be done
by using the linear perturbation of the mean density with the integral
formula of the stellar mass

δρ̄

ρ̄
= 3

4πR3ρ̄

∫ R

0
4πr2δρ dr, (1)

to define the target function of the SOLA inversion. Using a little
algebra in equation (1) and by non-dimensionalizing the integral,
one has as

Tρ̄ = 4πx2 ρ

ρR

, (2)

with the radial position of a layer of stellar material normalized
by the photospheric stellar radius x = r/R, ρ the density of stellar
material and ρR = M/R3, with M the stellar mass and R the pho-
tospheric stellar radius. Using this target, the cost function of the
SOLA method becomes

Jρ̄(ci) =
∫ 1

0

[
KAvg − Tρ̄

]2
dx + β

∫ 1

0
(KCross)

2 dx

+λ

[
2 −

∑
i

ci

]
+ tan θ

∑
i (ciσi)

2

< σ 2 >
, (3)

where we have introduced the averaging and cross-term kernels,
defined as follows

KAvg =
∑

i

ciK
i
ρ,�1

, (4)

KCross =
∑

i

ciK
i
�1,ρ , (5)

and the parameters β and θ which define the trade-off problem
between the fit of the target, the contribution of the cross term
and the amplification of observational error bars of the individual
frequencies, denoted σ i. The Ki

ρ,�1
and Ki

�1,ρ are the so-called
structural kernel functions, derived from the variational analysis
of the pulsation equations and < σ 2 >= 1

N

∑N

i=1 σ 2
i with N the

number of observed frequencies. In equation (3), we have also
introduced the inversion coefficients ci and λ, a Lagrange multiplier.
The third term is based on homologous reasoning described in Reese
et al. (2012) which also leads to a non-linear generalization of the
method where the inverted mean density, ρ̄Inv, is determined using
the formula

ρ̄Inv =
(

1 + 1

2

∑
i

ci

δνi

νi

)2

ρ̄Ref, (6)

with ρ̄Ref the mean density of the reference model of the inversion
and δνi

νi
the relative differences between the observed and theoretical

frequencies defined as νObs−νRef
νRef

. In the following sections, we will
always use this non-linear generalization. Using this approach, the
errors on the inverted mean density are given by

σρ̄Inv = ρ̄Ref

(
1 + 1

2

∑
i

ci

δνi

νi

) √∑
i

c2
i σ

2
i . (7)

A few additional comments can be made on equation (3). We
have intentionally dropped the classical surface term commonly
used in helioseismology (see for example Rabello-Soares, Basu
& Christensen-Dalsgaard 1999). In Section 3.4, we will comment
on this choice and discuss in more details the optimal approach
to implement surface corrections and provide examples using the
formulation of Ball & Gizon (2014) and Sonoi et al. (2015) for the
behaviour of the surface term for patched models and frequencies
including non-adiabatic effects.

We also note that we make the choice of using the (ρ, �1) struc-
tural pair to carry out the inversions. Other pairs, such as the (ρ, c2)
or the (ρ, Y) pair, with Y the helium mass fraction, could be used, but
the former shows strong contributions from the cross-term kernel
and is thus inadequate, whereas the latter requires an implementa-
tion of the equation of state which leads to accurate derivations of
state derivatives of �1 and leads to the same accuracy as the (ρ, �1)
pair.

The reliability of the inversion procedure is usually assessed in
terms of the norm of the averaging and cross-term kernels, defined
as follows

||KAvg||2 =
∫ 1

0

[
KAvg − Tρ̄

]2
dx, (8)

||KCross||2 =
∫ 1

0
K2

Cross dx. (9)

In addition to this analysis, it can be more thoroughly assessed when
the method is applied to artificial data with the help of three other
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quantities. The definition of these error contributions is

εAvg = −
∫ 1

0

(
Tρ̄ − KAvg

) δρ

ρ
dx, (10)

εCross = −
∫ 1

0
KCross

δ�1

�1
dx, (11)

εRes = ρ̄Inv − ρ̄Obs

ρ̄Ref
− εAvg − εCross, (12)

where we have defined εAvg, the contribution from the inaccurate
fit of the target by the averaging kernel, εCross, the error contri-
bution from the non-zero value of the cross-term kernel and εRes,
the residual error, which contains all other sources of uncertainties
such as non-linear contributions, surface effects, linearization of the
equation of state or systematic errors in the values of the observed
frequencies. We have also used the notations ρ̄Ref and ρ̄Obs for the
mean density of the reference model and the ‘observed’ artificial
target, respectively.

3 N U M ERIC A L EXERCISES

To test the reliability and robustness of the inversion technique, we
defined a set of artificial targets that would be fitted using various
constraints to define reference models for the inversion. A first set of
targets on the RGB and their properties are summarized in Table 1.

These targets have been computed using the Liège stellar evolu-
tion code (CLES; Scuflaire et al. 2008a) and their frequencies have
been computed using the Liège oscillation code (LOSC; Scuflaire
et al. 2008b). The formalism used for convection is that of the clas-
sical mixing-length theory (Böhm-Vitense 1958) and overshooting,
when applied, is implemented in the form of an instantaneous mix-
ing. The temperature gradient in the overshooting region is forced
to be adiabatic. Target models from Table 1 and reference models
from Table 2 also included opacities at low temperature from Fer-
guson et al. (2005) and the effects of conductivity from Potekhin
et al. (1999) and Cassisi et al. (2007). The nuclear reaction rates we
used are from Adelberger et al. (2011).

We used only low-order radial modes in our study, with n = 1
up to n = 15. Tests were also carried out by reducing the number
of observed frequencies down to 10 or 8 modes. In Section 3.4, we
also analyse how the results vary when the set of modes is changed
to higher order, for which surface effects are much larger. For each
target, the uncertainties of the frequency values were taken to be
0.03 μHz, similarly to the average error bars expected from datasets
of the Kepler mission. However, as we will see in the next section,
most of the limitations of the determination do not come from the
precision of the data, but from the low number of frequencies and
systematic effects such as surface effects or the non-verification of
the integral linear relations between relative frequency differences
and corrections of thermodynamic quantities (Dziembowski et al.
1990).

3.1 Calibrations using effective temperature and luminosity

First, we carried out inversions after having calibrated the models
based solely on their effective temperatures (Teff) and luminosities
(L), using different physical ingredients than those used to build
the 11 targets of Table 1. In Table 2, we describe the properties
of these reference models. For some of the targets, the calibration
was pushed so that both reference model and targets had nearly

exactly the same Teff and L, which means in turn that they have the
same radius. However, biases in the mass of the models (as can be
seen when comparing Tables 1 and 2) ensure that the mean density
is not the same for both target and reference models. Moreover,
strong changes in the physical ingredients have been applied such
that the differences observed in individual frequencies are not only
due to a mean density mismatch, but also to an inaccurate depic-
tion of the internal structure of the targets by their reference model.
For some of the targets, we also computed inverted values using
neighbouring models in the evolutionary sequence of the calibra-
tion, to demonstrate that the inversion was still efficient despite a
radius mismatch.1 Other tests, not presented here, were also carried
out using the FST formulation of convection (Canuto & Mazzitelli
1992) and led to similar results.

Inversion results are illustrated in Fig. 1 for each pair of models,
where we can see that for each test case, the inversion provides an
estimate of the mean density within 1 per cent of the real value of the
artificial target. The reliability of the method is confirmed from the
analysis of the value of the errors on the cross-term and averaging
kernels, which remained small and of the same order of magnitude
as what was observed in Reese et al. (2012) for main-sequence stars.
Tests were also conducted with the differential formulation based on
the linear fit of the average large frequency separation as in Reese
et al. (2012) and Buldgen et al. (2015), as well as the so-called
KBCD approach of Reese et al. (2012), based on the Kjeldsen,
Bedding & Christensen-Dalsgaard (2008) surface correction law.
These methods are formally quite similar to the inversion, as they
attempt to relate relative frequency differences to the mean density
of a given target. However, the first method is based on the fact
that the average large frequency separation is simply a frequency
combination. From there, a differential form can be derived when
comparing an observed target to a reference model and used to
obtain a corrected mean density value. The KBCD approach is based
on equation 6 of Kjeldsen et al. (2008), from which a differential
form based on individual frequencies can also be derived and used
to define a corrected mean density value from comparisons between
observed data and a reference model. We refer the reader to Reese
et al. (2012) for more details and the mathematical expressions
associated with these methods.

Both these methods showed unstable behaviours, in the sense
that they could sometimes provide results of similar quality than
those of the SOLA inversion, and sometimes provide much less
accurate results, with differences to the target value of more than 4
per cent. From an in-depth investigation, we can conclude that their
accuracy, when good, is actually due to a systematic compensation
of their various error contributions. This result had also already been
observed for main-sequence stars (Reese et al. 2012; Buldgen et al.
2015). Therefore, it is not surprising to observe a similar behaviour
in these test cases using only radial modes.

In Fig. 2, we illustrate the error contributions as defined in equa-
tions (10)–(12). The first striking difference in the error contribution
is the value of the cross-term error. In Reese et al. (2012), one can
see that the cross-term error associated with �1 is very often one
order of magnitude, if not more, lower than the averaging kernel
and the residual error contribution.

In these test cases, we can see that the cross-term error can some-
times become much more significant and even the dominant source
of error. The most striking cases being Targets 5, 6, and 7 in Fig. 2,

1A fact that has already been demonstrated in the test cases of Reese et al.
(2012) and Buldgen et al. (2015).
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Table 1. Properties of the target models used for the inversion.

Mass (M�) Age (Gy) R (R�) L (L�) EOS Opacities αMLT Diffusion αOv X0 Z0 Mixture

Target 1 1.4 3.5 8.97 34.2 FreeEOS1 OPAL5 1.8 Thoul8 0.10 0.72 0.0135 AGSS093

Target 2 1.3 5.84 6.75 17.64 FreeEOS OPAL 1.7 / 0.15 0.71 0.022 AGSS09
Target 3 1.05 10.2 14.52 72.48 FreeEOS OPLIB6 2.0 Paquette9 0.00 0.71 0.020 GN934

Target 4 1.25 3.96 29.0 270.0 FreeEOS OPAL 2.0 / 0.0 0.71 0.010 GN93
Target 5 0.98 13.9 31.47 177.9 CEFF2 OPAS7 1.5 Paquette 0.10 0.72 0.016 AGSS09
Target 6 1.15 7.89 47.26 418.0 FreeEOS OPLIB 1.8 Paquette 0.10 0.73 0.0155 AGSS09
Target 7 1.37 4.98 15.38 80.33 FreeEOS OPLIB 1.9 / 0.15 073 0.022 GN93
Target 8 2.5 1.08 36.78 366.5 CEFF OPLIB 1.7 / 0.15 0.73 0.0185 AGSS09
Target 9 2.1 1.18 29.33 262.3 FreeEOS OPLIB 1.9 Thoul 0.15 0.73 0.016 GN93
Target 10 3.0 0.38 35.38 329.0 CEFF OPAS 1.5 / 0.1 0.72 0.016 AGSS09
Target 11 1.6 2.35 14.07 80.6 FreeEOS OPAL 2.0 Paquette 0.00 0.71 0.020 GN93

References: 1 Irwin (2012), 2 Christensen-Dalsgaard & Daeppen (1992),3 Asplund et al. (2009), 4 Grevesse & Noels (1993),5 Iglesias & Rogers (1996), 6

Colgan et al. (2016),7 Mondet et al. (2015), 8 Thoul, Bahcall & Loeb (1994),9 Paquette et al. (1986). A ‘/’ in the ‘Diffusion’ column indicates that the effects
of microscopic diffusion are not included in the model.

Table 2. Properties of the reference models used for the inversion.

Mass (M�) Age (Gy) R (R�) L (L�) EOS Opacities αMLT Diffusion αOv X0 Z0 Mixture

Reference 1 1.3 4.66 9.00 36.30 FreeEOS OPAL 2.000 / 0.0 0.71 0.0155 AGSS09
Reference 2 1.35 6.30 6.71 17.44 FreeEOS OPLIB 1.805 / 0.1 0.72 0.028 AGSS09
Reference 3 1.08 10.00 14.49 71.98 FreeEOS OPLIB 2.150 Thoul 0.0 0.70 0.022 AGSS09
Reference 4 1.18 5.26 29.2 272.0 FreeEOS OPLIB 2.340 / 0.1 0.69 0.014 AGSS09
Reference 5 1.05 11.4 33.11 195.4 FreeEOS OPLIB 1.600 / 0.0 0.69 0.023 AGSS09
Reference 6 1.05 9.30 48.21 435.08 FreeEOS OPLIB 1.900 / 0.15 073 0.022 GN93
Reference 7 1.35 6.69 15.53 81.88 CEFF OPLIB 1.900 Thoul 0.00 0.69 0.018 AGSS09
Reference 8 2.2 0.82 35.98 350.7 CEFF OPAL 1.850 / 0.00 0.70 0.0185 AGSS09
Reference 9 1.9 1.32 28.54 248.3 CEFF OPLIB 1.850 / 0.1 0.72 0.017 GN93
Reference 10 2.8 0.62 35.10 323.2 CEFF OPAL 1.350 / 0.0 0.70 0.013 AGSS09
Reference 11 1.9 1.23 14.16 81.7 FreeEOS OPAL 1.800 / 0.72 0.016 GN93

Figure 1. Mean density inversion results for exercises between the targets of Table 1 and the reference models from Table 2.

where the cross-term error clearly dominates all contributions. This
is a consequence of specific aspects of the inversions considered
here. The very low number of modes implies that the damping of
the cross-term will be very difficult. In turn, this implies that keeping
a low cross-term contribution can only be achieved if the hypothesis
that δ�1

�1
is very small at all depths is satisfied. This is, however, not

always the case and is a consequence of the large radial extent of the
helium ionization zones. Consequently, the differences in �1 due to

mismatches in the helium abundance will have a larger impact on
the frequencies than in main-sequence stars, where their very nar-
row width implies that they do not have a strong contribution on the
cross-term integral. In addition to this effect, the density values, and
in turn the averaging kernel term in this inversion, has a much lower
value than on the main sequence, as a consequence of the expansion
of the star. Looking back at Targets 5, 6, and 7 we find that these
are the targets for which the differences both in mass and helium
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Figure 2. Error contributions εAvg, εCross, and εRes as defined in equations (10)–(12) for each pair of target and reference models from Tables 1 and 2.

Figure 3. Relative differences in adiabatic exponent �1 for the third and
fifth test cases, illustrating the impact of �1 on the cross-term contribution.

The relative differences in adiabatic exponent are here δ�1
�1

= �Tar
1 −�Ref

1
�Ref

1
,

where ‘Tar’ refers to the artificial target and ‘Ref’ to the associated reference
model.

abundance are the largest of all our samples. These differences nat-
urally implied large values for δ�1

�1
between these models and thus a

higher cross-term contribution. We illustrate this effect by plotting
in Fig. 3(a) comparison between the differences in �1 for Target
3, which has a low cross-term contribution and Target 5 for which
εCross largely dominates. These changes also imply that the trade-off
parameters (see Backus & Gilbert 1967, for a thorough discussion
of the trade-off problem in the context of Geophysics) have to be
properly adjusted depending on the proximity of the model with its
target. In these test cases, large variations of the helium abundance
were observed and had to be damped by increasing the β parameter
in the SOLA cost function.

From Fig. 2, it is however clear that the accuracy of the inver-
sion does not stem from large compensation effects between the
various error contributions. Such a compensation would be seen if
for example a large positive value of a few per cent was found for
example for εAvg in Fig. 2 and a large negative value of the same
order of magnitude was found for εCross in the same inversion. This
would imply that the agreement between the inverted value and the
target value is purely fortuitous and not representative of the real
limitations of the inversion.

In Fig. 2, we see that for most of the cases, the sum of the mod-
ulus of all the error contributions remains within 1 per cent and
never exceeds 1.5 per cent for the remaining cases. As a compari-
son, the usual scaling law using the large frequency separation and
a solar reference showed at best differences of 1.3 per cent for Tar-
get 3, where the inversion shows differences of less than 0.1 per
cent with the observed value. For the other targets, the accuracy
of the scaling laws could be worse than 30 per cent, especially for
the more massive targets. Although one could apply corrections
to the scaling laws to improve their accuracy, it is clear that the
inversions have the advantage of using in the most optimal way
all the seismic information of the frequency spectrum. This will
be further illustrated on real data in Section 4. Similarly, using the
differential form of the <�ν > scaling law defined in Reese et al.
(2012), who used another reference than the Sun, we showed that
this formulation relied, as for main-sequence stars, on a compensa-
tion of its intrinsic errors. This implies a much lower robustness of
the method, especially if only a few modes of low radial order are
observed. One should also note that the test cases presented here
did not use any seismic constraints to define the reference model
for the inversion. Hence, the frequency differences between target
and reference could sometimes be very large, which can induce a
lower stability and reliability of the inversion. In practice, seismic
constraints should be used to define the reference models to ensure
an optimal result. The effect of seismic constraints will be presented
and discussed in the next section.

3.2 Calibrations using seismic constraints

In Section 3.1, we only used classical parameters to define our
reference models, which is far from what would be done for stars
for which individual frequencies have been determined. In such
cases, seismic modelling would be favoured, at least by using global
parameters such as the average large frequency separation and the
frequency at maximum power, νMax. If individual frequencies are
observed, one might even want to fit directly these constraints to
extract as much seismic information as possible. While this seems an
efficient approach, it should be kept in mind that directly fitting the
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frequencies can lead to underestimated uncertainties and strongly
depends on the surface effect corrections.2

Both approaches were tested for five additional artificial targets,
whose properties are given in Table 3. The dataset used for both the
forward modelling and the inversions contained nine radial modes,
from n = 5 to n = 13. The reference models were obtained through
forward modelling using the AIMS pipeline. The underlying grid of
models used for the fitting was built using the CLES with a mass
range in solar masses between [0.75, 2.25] with a step of 0.02 and
a [Fe/H] range between [−0.75, 0.25] with a step of 0.25. The
mixing-length parameter value is fixed by a solar calibration at a
value of 1.691. The effects of microscopic diffusion are not taken
into account in the models. Moreover, the grid is built with the
GN93 abundance tables (Grevesse & Noels 1993), the FreeEOS
equation of state (Irwin 2012), and the OPAL opacities (Iglesias
& Rogers 1996), while the nuclear reaction rates from Adelberger
et al. (2011) are used.

The results of this modelling are shown in Table 4. We denoted
the reference models computed from the fitting of individual fre-
quencies as 1.1, 2.1, and so on, whereas models denoted as 1.2,
2.2, etc. were built using the global seismic indicators, namely the
average large frequency separation, <�ν>, and the frequency of
maximum power, νMax. Classical constraints such as [Fe/H] and
Teff were also used, where uncertainties of 0.1 dex and 80 K were
respectively considered. No surface correction was used when car-
rying out the fits, as only models using similar atmospheric models
and adiabatic frequencies were used here. These effects will be
discussed separately, in Section 3.4.

The first conclusion that can be drawn is that the fit of the mean
density is very good using both global seismic constraints and indi-
vidual frequencies. More specifically, the fit of the mean density is
exact to numerical precision when the individual modes are used and
in fact, since almost every frequency is fitted within its error bars,
the inversion process is in this case useless. Indeed, by definition,
the inversion, based on the recombination of individual frequency
differences, will not bring any additional information. This is the
reason why the Reference 1.1, 2.1, 3.1, 4.1, and 5.1 are not illus-
trated in Fig. 4. However, we can still see that the masses and radii
of the artificial targets are not always properly reproduced. This is
due to the incorrect reproduction of the helium abundance, since
the grid used for the AIMS modelling was built using a fixed enrich-
ment law in heavy elements abundances and the targets were built
without following any such approach. This implies that the deter-
mination of stellar mass on the RGB still strongly relies on accurate
determinations of stellar luminosities and/or radii, as provided by
the Gaia mission.

Moreover, we will see in Section 4 that mean density inversions
can still be useful in real observed cases. First, because it is in
practice nearly impossible to fit every individual mode for real data
and the results still depend in any case from the adopted surface
corrections. Secondly, because the inversion can provide a useful
verification step to the forward modelling process and provide a
mean density value which can then be directly introduced in the
cost function of second forward modelling step.

From Table 4, we can see that the fits using global seismic pa-
rameters can lead to less accurate results, even for the mean density.
In these cases, since the individual frequencies were not reproduced
within their uncertainties, computing the seismic inversions could

2This is particularly true for the main-sequence stars for which a large
number of frequencies are observed with Kepler.

provide an improvement of the mean density value. These results
are illustrated in Fig. 4 and the associated error contributions are
illustrated in Fig. 5.

From Fig. 5, we see that the SOLA method is able to provide a
better determination of the mean density without large compensa-
tion of its errors. A certain degree of compensation can be observed,
but the modulus of each error contribution remains well within 1
per cent, ensuring that the inversion still provides additional infor-
mation after the forward modelling process. This confirms that the
use of seismic inversions offers a gain in accuracy and tighter con-
straints on the mean density. The inverted value can then be used
directly as constraint in a second run of seismic forward modelling.

3.3 Red clump stars

In addition to RGB targets, two red clump models of the same evo-
lutionary sequence were also used to test the inversion techniques.
The properties of these targets are given in Table 5. We first made
attempts to carry out inversions for these artificial targets using a
clump and asymptotic giant branch models as references. These
references were built using slightly different physical ingredients.
Reference 1 was calibrated to approximately reproduce both Teff and
νMax of the targets. References 2 and 3 are two additional models
tested with both Targets 1 and 2. They were just taken as additional
test cases to see how far the inversion could be pushed once it was
established that the star was in the helium burning phase. Both ref-
erence models and artificial targets were computed using the MESA

evolution code (Paxton et al. 2018) and their characteristics are
summarized in Table 5. Again, we used nine radial oscillations as
dataset for the inversion, namely the modes with n = 5 to n = 13.

The results of these exercises are illustrated in Fig. 6, and the
error contributions to the inversions are illustrated in Fig. 7. From
these tests cases, it seems that mean density inversions can also be
performed for clump stars even if only a small number of radial
frequencies are available. The typical errors of these inversions is
then of around 1 per cent, which is much better than what can be
achieved using the average large frequency separation.

While these tests demonstrate the efficiency of the method, they
also rely on a fundamental hypothesis, which is that one was able
to determine that the target belonged to the clump and not the RGB.
For stars with an observed period spacing, there is no ambiguity
possible, but higher on the asymptotic giant branch and even for
some clump stars, no period spacing can be determined. For these
specific cases, confusion can remain and the reference model can
be very far from its actual target.

To simulate such effects, we used the AIMS software to fit the
individual frequencies of the clump models using a grid of RGB
models only. As a result, we got reference models very far from
the targets but which actually reproduced quite well (although not
as well as for the tests on the RGB) the target frequencies. These
models are denoted Reference 4 and 5 and display for example
non-physical ages and are completely off in terms of luminosity
and Teff, which were not used in the fits. Therefore, in a real case,
these models could clearly be rejected, but to further test and break
the inversion, we still kept them and attempted to determine the
mean density of both Target 1 using Reference 4 and Target 2 using
Reference 5.

These test cases are very enlightening as neither the fitting process
using AIMS nor the inversion could provide a reliable estimate of
the mean density. This is illustrated in Figs 6 and 7. In Fig. 7, we
can see that the SOLA method is unable to provide an accurate fit
of the target function and hence a reliable mean density value. The
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Table 3. Properties of the target models used for the inversion and AIMS modelling.

Mass (M�) Age (Gy) R (R�) L (L�) EOS Opacities αMLT Diffusion αOv X0 Z0 Mixture

Target 1 1.40 3.09 2.77 6.44 FreeEOS OPAL 1.8 / 0.0 0.72 0.0135 AGSS09
Target 2 1.05 9.85 4.01 6.50 FreeEOS OPLIB 2.0 Paquette 0.0 0.71 0.0200 GN93
Target 3 1.15 11.61 3.67 4.67 CEFF OPLIB 1.5 Paquette 0.15 0.72 0.0300 AGSS09
Target 4 1.05 7.94 2.47 3.47 FreeEOS OPLIB 1.8 Thoul 0.2 0.73 0.0100 AGSS09
Target 5 1.20 8.31 2.61 3.64 FreeEOS OPAL 2.0 / 0.15 0.71 0.0300 GN93

Table 4. Properties of the reference models used for the inversion and AIMS modelling.

Mass (M�) Age (Gy) R (R�) L (L�) EOS Opacities αMLT Diffusion αOv X0 Z0 Mixture

Reference 1.1 1.402 3.15 2.77 6.49 FreeEOS OPAL 1.691 / 0.05 0.719 0.0157 GN93
Reference 1.2 1.423 3.087 2.78 6.67 FreeEOS OPAL 1.691 / 0.05 0.716 0.0173 GN93
Reference 2.1 1.113 7.50 4.1 7.50 FreeEOS OPAL 1.691 / 0.05 0.721 0.0134 GN93
Reference 2.2 1.153 6.92 8.25 4.16 FreeEOS OPAL 1.691 / 0.05 0.718 0.0161 GN93
Reference 3.1 1.082 11.30 3.60 5.41 FreeEOS OPAL 1.691 / 0.05 0.679 0.0331 GN93
Reference 3.2 1.251 6.38 3.77 6.39 FreeEOS OPAL 1.691 / 0.05 0.691 0.0300 GN93
Reference 4.1 1.041 9.73 2.46 3.23 FreeEOS OPAL 1.691 / 0.05 0.718 0.0149 GN93
Reference 4.2 1.212 5.80 2.61 3.72 FreeEOS OPAL 1.691 / 0.05 0.711 0.0194 GN93
Reference 5.1 1.157 8.43 2.58 3.13 FreeEOS OPAL 1.691 / 0.05 0.679 0.0331 GN93
Reference 5.2 1.329 4.75 2.71 3.89 FreeEOS OPAL 1.691 / 0.05 0.695 0.0274 GN93

Figure 4. Inversion results for the artificial targets 1–5, using the reference
models 1.2–5.2. The abscissa refers to the target number.

Figure 5. Error contributions εAvg, εCross, and εRes as defined in equa-
tions (10), (11), and (12) for the inversion exercises using targets 1–5 and
reference models 1.2–5.2.

only way for the inversion to work was to include the fundamental
harmonics in the frequencies used for the inversion. We have added
this test case in Figs 6 and 7 to illustrate the effect of using the full
set of modes.

This is not really surprising, as the fundamental mode is the
one that carries most of the information on the deep layers. Its
value was indeed radically different from that of the corresponding
modes of the artificial target, while all other modes could be fitted
quite well. This illustrates two things, first, that the fundamental
radial mode can be used to distinguish between RGB and red clump
stars, and secondly, that even if the frequencies seem well fitted,
the mean density of the star is not. This is in strong contrast with
the RGB case and demonstrates again the importance of providing
as reliable as possible reference models when computing linear
structural inversions. Indeed, these test cases simply illustrate the
well-known fact that inversions in asteroseismology are not fully
model-independent and thus require a proper assessment of the
model-dependence to avoid biased and hasty interpretations of their
results.

3.4 Importance of surface effects

As stated in Section 2, surface effects are an important source of
uncertainties for seismic inversions based on the integral relations
for individual frequencies. In recent years, various corrections have
been proposed to take these effects into account in seismic mod-
elling. The most recent ones, tested with patched models, are those
of Ball & Gizon (2014) and Sonoi et al. (2015). In this section, we
test these corrections when applied to the inversion of the mean den-
sity of RGB stars, using the patched model I of Sonoi et al. (2015) as
a target, computed with the CESTAM stellar evolution code (Goupil
et al. 2013; Marques et al. 2013). Frequencies for this model were
computed in the adiabatic approximation using the Aarhus pulsation
package (Christensen-Dalsgaard 2008) and the MAD non-adiabatic
oscillation code (Dupret 2001; Grigahcène et al. 2005; Dupret et al.
2006) which takes into account a time-dependent treatment of con-
vection including the effects of turbulent pressure and variations of
the convective flux due to the oscillations.
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Table 5. Properties of the clump targets and references.

Mass (M�) Age (Gy) R (R�) L (L�) EOS Opacities αMLT Diffusion αOv X0 Z0 Mixture

Target 1 1.00 12.30 10.38 48.88 OPAL OPAL 1.966 / 0.2 0.7163 0.0176 GN93
Target 2 1.00 12.32 10.86 52.31 OPAL OPAL 1.966 / 0.2 0.7163 0.0176 GN93
Reference 1 1.15 8.76 11.21 51.37 OPAL OPAL 1.966 / 0.2 0.696 0.0276 GN93
Reference 2 1.15 8.845 12.83 64.89 OPAL OPAL 1.966 / 0.2 0.718 0.0161 GN93
Reference 3 1.15 8.847 13.44 69.52 OPAL OPAL 1.966 / 0.2 0.718 0.0161 GN93
Reference 4 0.91 22.03 9.85 29.05 FreeEOS OPAL 1.691 / 0.05 0.690 0.0300 GN93
Reference 5 0.97 17.27 10.47 32.90 FreeEOS OPAL 1.691 / 0.05 0.690 0.0300 GN93

Figure 6. Inversion results for the clump models 1 and 2. The abscissa refers to the pair of target and reference models used for the inversion.

Figure 7. Error contributions εAvg, εCross, and εRes as defined in equations (10), (11), and (12) for the inversion exercises using clump stars as artificial targets.
The abscissa refers to the pair of target and reference models used for the inversion.

In addition to the various corrections proposed in the literature,
there are multiple ways of including these corrections in the SOLA
inversion. The classical approach is to mimic what has been done
in helioseismology, by including an additional term in the SOLA
cost function of equation (3), which will then have a specific form
depending on the surface correction chosen. The parameters for the
correction are free parameters of the inversion, to be determined
alongside the structural corrections. However, this approach might

be considered suboptimal in asteroseismology, where the number
of individual modes is very limited and where including the surface
correction might lead to low quality fits of the averaging kernels.
This problem is especially true for the cases studied here, where
one might have around 10 individual modes or less to extract the
structural constraints. Another approach is to correct the frequen-
cies before carrying out the inversion, using the empirical law pro-
vided in Sonoi et al. (2015) or the coefficients from Ball & Gizon
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Mean density inversions for giant stars 2313

Figure 8. Relative differences between adiabatic and non-adiabatic fre-
quencies in frequency plotted against frequency for the radial modes of the
patched model considered as target for our exercise.

(2014) and Ball et al. (2016) obtained while carrying out the for-
ward modelling.3 The inversion is then carried out assuming that
the surface effects have been corrected and no surface term is then
added to the SOLA cost function. In what follows, we will provide
illustrations of both approaches.

Reference models were obtained with the AIMS software (Reese
2016; Reese et al. 2016; Rendle et al. submitted) using both adiabatic
and non-adiabatic frequencies for the target patched model. The
reference models were built using various sets of constraints, using
the Liège stellar evolution code (Scuflaire et al. 2008a) and included
an Eddington grey atmosphere. A first reference model for the
artificial target was determined using the effective temperature, the
average large frequency separation of the radial modes determined
using a linear regression and the frequency of maximum power,
νMax, derived from the scaling laws. However, to see the impact of
the surface effects when using individual modes, we also carried out
a second fit of the artificial target using the effective temperature
and the individual frequencies of the radial mode as constraints.
No surface correction was considered in either case, implying that
both fits should be biased. We considered low order modes, from
n = 1 to n = 15, which have low frequencies compared to νMax and
thus should not display extreme changes due to the upper layers.
This is confirmed in Fig. 8 where we compare the adiabatic and
non-adiabatic frequencies from n = 1 up to n = 20. As expected, a
clear trend with frequency is observed.

The results using AIMS for the forward modelling are the follow-
ing. Using the mean large frequency separation, the difference of
the mean density value is of 3.6 per cent when adiabatic frequencies
are considered. If non-adiabatic frequencies are used in the mod-
elling, then the difference between the target value and the value
determined by AIMS is of 3.8 per cent. The fact that using the non-
adiabatic frequencies only induces a small change of the results is

3This approach might induce correlations between the frequencies. In this
study, since the coefficients of the empirical law of Sonoi et al. (2015) are
fixed from non-seismic parameters, no correlation is introduced. Similarly,
the Ball & Gizon (2014) correction has been implemented in AIMS as an
additional free parameter of the forward modelling process and used to
correct the theoretical frequencies, which also avoids the introduction of
additional correlations.

due to the properties of the dataset, which contains low frequencies
for which non-adiabatic effects are small. If one uses individual
frequency values as seismic constraints, the difference is reduced
by a factor 3, going down to 1.1 per cent if adiabatic frequencies
are considered and to 1.3 per cent if non-adiabatic frequencies are
used.

We then tested the inversion technique using four reference mod-
els close to the models found with AIMS, to also assess the model
dependence of the inversion technique. The results are illustrated
in Fig. 9 and the error contributions are given in Fig. 10 for each
model and most of the surface effect corrections. In Fig. 9, the
notation ‘prior’ and ‘posterior’ has been adopted when the Sonoi
et al. (2015) correction was respectively applied on the frequencies
beforehand, using the coefficients directly from the paper and when
the correction was applied in the SOLA cost function directly in
a linearized form. The notation ‘empirical’ was used to denote the
case where the coefficients were derived from the empirical formula
in Teff and log g from their paper.

In Fig. 12, we chose not to plot the error contributions of some
of the test cases to avoid redundancy.

A quick inspection of the results show that the inversion results
are always well below the 3.7 per cent agreement with the target
value showed by the forward modelling process using only the
average large frequency separation. However, not all results are
superior to the 1.1 per cent differences from the use of individual
radial modes. To better understand what is happening here, we
have to take a look at the individual error contributions and see
which one is contributing to the biases in some of the inversions. A
first inspection shows that the best results are often obtained when
no correction is applied, except for model 2 where compensation
is found for all other inversions and the excellent agreement is
thus fortuitous. This is a consequence of the low-frequency modes
used in the set, for which all surface effect corrections seem to
be overestimated and thus bias the results, we will see how these
effects change when another set of modes is used for the inversion.

A second conclusion that can be drawn is that for most cases,
applying the correction within the SOLA cost function is not the
best option. Only model 1 still shows good results with this im-
plementation of the surface effect correction. In all other cases, a
significant increase in the averaging kernel error εAvg is seen and the
quality of the results is relatively poor for both the Ball et al. (2016)
and the Sonoi et al. (2015) correction laws. The increase of εAvg is
simply due to the fact that including the correction within the SOLA
cost function will introduce a strong trend in the averaging kernel
which depends on the form of the correction. This trend then leads
to a much less accurate fit of the target function of the inversion and
thus to a much less accurate result.

The other approach we proposed was to introduce the surface
corrections using the empirical law proposed by Sonoi et al. (2015).
Overall, we can see from Fig. 12 that this approach leads to larger
residual errors, hence, this method does not seem to reduce signifi-
cantly the surface effect for the set of modes considered. However,
it has the strong advantage of not reducing the fit of the target func-
tion. The poor performance of the surface correction laws in this
particular test case is a consequence the very low frequency of the
modes, which results in an overestimate of the surface corrections
for the very low n modes which are the most useful to the inversion.
Also, it seems that biasing the correction law only slightly affects
the inversion results. From Fig. 9, it appears that shifts of less than
0.1 per cent of the inverted mean density values are induced by
changing the Teff and log g values in the empirical law of Sonoi
et al. (2015). In this particular case, we shifted the values of the
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2314 G. Buldgen et al.

Figure 9. Inversion results using various surface effect corrections for each of the four models using patched model I from Sonoi et al. (2015) as a target and
either adiabatic or non-adiabatic frequencies.

Figure 10. Error contributions εAvg, εCross, and εRes as defined in equations (10)–(12) for each of the four models selected as a reference for the patched target
for some test cases of the surface effects. Each test case has its dedicated subplot to make the analysis easier.

quantities by 45K and 0.1dex respectively. Larger shifts would in-
duce larger deviations but they would remain negligible in the total
error budget of the inverted results. From this analysis, it seems that
the Ball et al. (2016) combined law does the best job at reducing the
residual error and thus the contribution of surface effects. However,
this reduction of the residual error is made at the expense of a larger
increase of the error from the fit of the averaging kernels when
this approach is directly implemented in the SOLA cost function.
It thus seems that the optimal choice would be to be able to apply
the Ball et al. (2016) correction before carrying out the inversion or
defining some law with a similar form as in Sonoi et al. (2015) for
this surface correction.

To further test the impact of surface effects, we take a look at
the impact of changing the set of observed modes and using only
modes of higher frequencies when non-adiabatic effects are taken
into account. The results are illustrated in Fig. 11 for Models 1 and
4. For both models, we either considered not including any surface
correction or using the empirical formula of Sonoi et al. (2015) to
correct the frequencies before carrying out the inversion. We started
with the full set of non-adiabatic frequencies available for the target,
thus with modes of n = 1 up to n = 20 and proceeded to eliminate
some of the lowest order modes up to n = 7.

Figure 11. Inversion results for models 1 and 4 using patched model I from
Sonoi et al. (2015) as target and varying the lowest n in the set of modes
used for the inversion.
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Mean density inversions for giant stars 2315

Figure 12. Error contributions εAvg, εCross, and εRes as defined in equations (10)–(12) for models 1 and 4, varying the lowest n in the set of observed
frequencies.

From Fig. 11, one can see that the results strongly depend on the
set of modes used to carry out the inversion and that, as expected,
the lowest order modes are crucial to derive a good result. One
could be tempted to say that for model 1 the empirical law does
an excellent job at correcting the frequencies. However, looking
at Fig. 12, we can see that the excellent results for the empirical
correction are simply due to a fortuitous compensation effect. These
test cases have also revealed a fundamental limitation of the seismic
determination of the mean density using the radial oscillations of
red giant stars. It appears that without the fundamental mode, the
accuracy of the inversion is at best of 1.5 per cent and that if only
high n modes are available, the mean density cannot be determined
within less than 1 per cent to the observed value. However, if the
fundamental mode is present, the accuracy of the inversion goes
down to less than 1 per cent and is not strongly affected by the
surface effects. The importance of the fundamental mode can also
be observed when just looking at the change of the quality of the fit
of the averaging kernel in Fig. 12. The importance of this specific
mode is in fact not a surprise, since it carries a lot of information
about the mass distribution inside the star (Ledoux & Pekeris 1941;
Ledoux 1955; Ledoux, Simon & Bielaire 1955) and thus is crucial
to seismic methods.

We can see that for both models, if the set of observed modes
is reduced to n higher than 7, the quality of the inversion result
is greatly reduced. This is observed whether a surface correction
is applied or not, since εAvg quickly becomes the dominant source
of errors. We can also see that the residual error, εRes, used here
to quantify the surface effect contribution, rises if no correction is
applied. However, we have also noted that the empirical correction
of Sonoi et al. (2015) used in this test case does not always reduce
efficiently the contribution of the surface effects. The Ball et al.
(2016) correction could perhaps provide a better reduction of the
surface effect but it should not be directly implemented in the SOLA
cost function, as it then strongly reduces the quality of the fit of the
target function.

In addition to the seismic inversion of the mean density, we also
tested the variational formulation of the scaling law for the aver-
age large-frequency separation determined from a linear regression,
presented in Reese et al. (2012). For all test cases presented here,
this approach provided worse results than the SOLA inversion. This
is also seen in the AIMS fits, where using the average large frequency
separation leads to a 3.7 per cent error on the estimate of the mean
density. This approach did not provide good results and was found to
be very sensitive to surface effects. For example, the results signif-
icantly varied if the empirical correction of Sonoi et al. (2015) was

biased. We also found that the quality of the results strongly varied
with the set of modes. For example, if low n modes are used, the
impact of surface effects is strongly reduced but since the modes are
far from being in the asymptotic regime, the accuracy remains very
low. Results obtained from the large frequency separation improve
if higher order modes are taken, but are then affected by the surface
effects. In addition, we observed, as in Reese et al. (2012), that the
accuracy of this method relied on error compensations rather than
a high-quality fit of the kernels. This implies that surface effects,
non-linear behaviour, or an inadequate verification of the asymp-
totic relations can quickly lead to disagreements with the real value
as large as 2 or 3 per cent. In fact, in a worst case scenario, using
non-adiabatic frequencies, differences as high as 8 per cent were
observed for the mean density determined from the average large
frequency separation.

Overall, it seems that using the information of the individual
modes offers much better constraints, since the fits obtained with
AIMS could reach an agreement with the target value of around 1 per
cent. A mean density inversion can in such cases provide additional
information and reach below the 1 per cent limit for the mode set
considered here. Depending on the set of modes, the accuracy of
the inversion technique will vary, but so will the accuracy of the
forward modelling technique. We emphasize here that the 1 per
cent differences of the forward modelling process were obtained
for a set of modes where the fundamental mode was observed.
Additional tests on a larger sample of artificial targets and observed
modes are thus required to provide better insights on the problem
of surface effects and its impact on forward modelling approaches.

An additional comment should also be made regarding the way
the surface effects are simulated in this study. First, the modelling
of the non-adiabatic effects is far from perfect and problems still
remain in the physical representation of the coupling between con-
vection and oscillations, as can be seen from the differences in
linewidth and amplitudes between simulated non-adiabatic spectra
and observations in Grosjean et al. (2014). This implies that the tests
we carried out with non-adiabatic frequencies are only qualitative
but can serve as a warning when using various surface correction
laws which are derived from purely adiabatic computations.

4 A PPLI CATI ON TO ECLI PSI NG BI NARIES

In addition to numerical exercises on artificial targets, we also tested
the mean density inversions on a few eclipsing binaries observed by
Kepler, previously studied by Gaulme et al. (2016) and Brogaard
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et al. (2018), namely KIC5786154, KIC7037405, KIC8410637,
KIC8430105, and KIC9970396. It should be noted that in the
present study, we concern ourselves with the stability of the mean
density inversions. A full assessment of the accuracy of seismic
masses and radii using individual frequencies would require a bet-
ter assessment of the surface effect corrections, the importance of
the helium abundance and of the atmospheric models used for the
whole sample of eclipsing binaries available, which is beyond the
scope of this study.

4.1 Peak-bagging and determination of individual frequencies

Mode frequencies were estimated by performing bespoke mode fit-
ting to each of the stars. Using the full set of available Kepler pho-
tometric data, we computed the estimate of the frequency power
spectrum following Garcı́a et al. (2011). We located the modes of
oscillation using visual inspection and determined the mode iden-
tification (i.e. selected the radial and quadrupole modes). We also
checked the consistency of the detection with existing red giant
measurements following Davies & Miglio (2016). In order to de-
termine the frequencies for the radial modes, we fitted each pair of
radial and quadrupole modes with a sum of Lorentzians. For full
details of the mode fitting method, we refer to Davies et al. (2016).
Moreover, because of the binary nature of the targets, we have not
applied a frequency correction to the mode frequencies normally
applied to remove the Doppler shift as a result of the line-of-sight
velocity Davies et al. (2014).

4.2 Forward modelling and inversion results

The forward modelling process was carried out with the AIMS soft-
ware, using the same grid as in the numerical exercises on artificial
targets. Three separate runs were made to check for convergence
and reliability of the process. The modelling was performed using
only [Fe/H] and the individual frequencies using surface corrections
from Ball & Gizon (2014). For KIC8430105 and KIC8410637, a
two terms surface correction was considered, while a single term
correction was considered for the other targets whose spectrum con-
tained much less oscillation modes. The masses and radii from this
forward modelling process are given in Table 6 alongside the values
from Gaulme et al. (2016) and Brogaard et al. (2018). Again, we
mention that they only consist in a preliminary modelling result, as
other constraints such as effective temperature, luminosity, and/or
radius could change these values to a certain extent and that a more
thorough study using various physical ingredients is required for a
full assessment of the robustness of these masses and radii determi-
nations. It should thus be noted that the reference models considered
here used Eddington grey atmospheres and hence do not reproduce
the effective temperature of the RGB.

The inversion results for the mean density of each target are
given in Table 7, where we considered three cases for each refer-
ence model. First, we carried out the inversion without applying
any surface correction to the frequencies, secondly, we applied the
Ball & Gizon (2014) correction as determined by the forward mod-
elling in AIMS, thirdly, we applied the empirical Sonoi et al. (2015)
correction on the frequencies. All these corrections were applied
before carrying out the inversion, as including them directly in the
cost function of the SOLA method does not allow for an accurate
reproduction of the target function of the inversion and leads to
strong biases.

From Table 7, we can see that the surface effect corrections can
induce variations of up to 1 per cent of the mean density of the

star. This result confirms the fact that the errors of seismic inver-
sions cannot be reliably determined only by the propagation of the
observed uncertainties, as other effects such as model-dependence
and effects of surface corrections will dominate the uncertainties.
Similar tests were performed using a few models around the best
reference determined by AIMS and the results remained within this 1
per cent interval, defining the total variation of the inversion results.
Therefore, taking into account potential further model-dependences
and uncertainties, we can consider that in these test cases, the mean
density has been determined with a precision of ±1.5 per cent, con-
sidering a conservative interval three times larger than that deter-
mined by the mean density inversion. This also implies that within
these very conservative uncertainties, all reference models agreed
with the inversion results.

This is no surprise, as most of the frequencies were very well
fitted by the forward modelling process, as can be illustrated by
the echelle diagram computed for KIC8410637, plotted in Fig. 13
and showing the good agreement between theoretical and observed
frequencies once surface effect corrections are included.

As such, this implies that seismic inversions of the mean density
can in these cases play a first role of confirmation of the quality
of the fit, but can also be included in a second step of forward
modelling to determine better masses for red giants. Indeed, using
individual frequencies directly as constraints can lead to cost func-
tions dominated by seismic information and unrealistically precise
determinations of fundamental parameters of stars. Hence, using the
inverted mean density directly as a kind of observational constraint,
as done for example for the 16Cyg binary system in Buldgen, Reese
& Dupret (2016a) and Buldgen et al. (2016b), alongside luminosi-
ties or radii determined by Gaia may lead to more accurate masses
of red giants and clump stars. To illustrate this, we show in Fig. 14
the mass values obtained from the inverted mean densities and radii
values from the eclipses observations. We selected the most precise
determinations of radii between Brogaard et al. (2018) and Gaulme
et al. (2016). This is not a major concern since the radii values agree
very well with each other for the targets present in both studies. We
note that for the case of KIC7037405 and KIC9970396, the mean
density inversions lead to an unambiguous correction which leads
to a very good agreement with the dynamical mass of Gaulme et al.
(2016) for KIC7037405. Further investigations show that the mean
density derived from the dynamical values of the mass and radius
from Brogaard et al. (2018) differs by around 4 ± 2.5 per cent with
the ones determined in this study. Similarly, the values determined
from global seismic indices using the PARAM software (Rodrigues
et al. 2017) also show discrepancies of around 2 per cent. For this
particular target, the closest value to the inverted one is found us-
ing the mass and radii values from the corrected scaling relations
in table 4 of Brogaard et al. (2018), while the uncorrected scaling
relations give a disagreement of 4 per cent.

As for KIC9970396, slight disagreement remains and further
modelling using tighter constraints is required to determine whether
the slightly higher mass value found by seismology is due to model-
dependences or if the origin is to be found elsewhere. In this case,
the mean density value determined from the eclipses is in agreement
within 1σ (for this case around 3 per cent) with the value determined
here. The value determined from the corrected scaling relations
shows an already quite good agreement. However, the mean density
value determined from the uncorrected scaling relations shows a
larger disagreement of approximately 6 per cent whereas the values
determined from PARAM differ by approximately 3 per cent with the
inverted results and significantly from the mean density value from
the eclipses. This seems to indicate that overall, using the entire
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Table 6. Masses and radii for the Kepler eclipsing binaries from seismic forward modelling and from eclipses mea-
surements [EB-B denotes values from Brogaard et al. (2018) and EB-G from Gaulme et al. (2016)].

KIC7037405 KIC5786154 KIC8430105 KIC8410637 KIC9970396

MSis (M�) 1.29 ± 0.04 1.12 ± 0.05 1.23 ± 0.06 1.53 ± 0.06 1.15 ± 0.02
RSis (R�) 14.19 ± 0.17 11.54 ± 0.16 7.45 ± 0.11 10.70 ± 0.15 7.91 ± 0.06
MEB-B (M�) 1.17 ± 0.02 / / / 1.178 ± 0.015
REB-B (R�) 14.000 ± 0.093 / / / 8.035 ± 0.074
MEB-G (M�) 1.25 ± 0.03 1.06 ± 0.06 1.31 ± 0.02 1.56 ± 0.03 1.14 ± 0.02
REB-G (R�) 14.1 ± 0.2 11.4 ± 0.2 7.65 ± 0.05 10.7 ± 0.1 8.0 ± 0.2

Table 7. Inverted mean densities for the Kepler eclipsing binaries of this study.

ρ̄Ref 10−3(g cm-3) ρ̄NoSurf
Inv 10−3(g cm-3) ρ̄Ball

Inv 10−3(g cm-3) ρ̄Sonoi
Inv 10−3(g cm-3)

KIC8430105 4.209 4.166 ± 2 × 10−3 4.205 ± 2 × 10−3 4.199 ± 2 × 10−3

KIC5786154 1.0275 1.0254 ± 5 × 10−4 1.0309 ± 5 × 10−4 1.0342 ± 5 × 10−4

KIC7037405 0.6374 0.6432 ± 6 × 10−4 0.6464 ± 6 × 10−4 0.6482 ± 6 × 10−4

KIC8410637 1.768 1.762 ± 1 × 10−3 1.785 ± 1 × 10−3 1.770 ± 1 × 10−3

KIC9970396 3.287 3.317 ± 1 × 10−3 3.329 ± 1 × 10−3 3.333 ± 1 × 10−3

Figure 13. Echelle diagram of KIC8410637 illustrating the observed, the-
oretical frequencies [both corrected for surface effects using Ball & Gizon
(2014) formula and uncorrected].

information of the frequency spectrum leads to the best agreement
with the dynamical values.

We can see in this figure that for all cases, using the inverted
mean density and the dynamical radii further improve the results.
However, most of the improvement does not stem from the im-
provement of the mean density as the corrections remained quite
small, but rather from the use of the radii values from the eclipses.
This implies that the use of classical constraints such as precise
luminosities or radii will lead a major role in the determination of
reliable masses for red giants and red clump stars.

5 C O N C L U S I O N

In this study, we have demonstrated the feasibility and robustness
of seismic inversions of the mean density of red giant and red
clump stars using only a few observed radial modes, providing

an extension to the framework of the approach initially applied to
main-sequence solar-like stars (Reese et al. 2012; Buldgen et al.
2015). We have started by introducing the approach to the inverse
problem in Section 2 and applied it in extensive numerical tests
using calibration techniques based on effective temperature and
luminosity in Section 3.1 as well as seismic constraints in 3.2.
We have analysed the possibility of carrying out inversions for the
mean density both for red giant branch and clump stars, as well
as trying to determine the mean density of a misidentified clump
star. In the last case, the inversion proved to be inaccurate and
thus the method provided here is only valid for unambiguously
identified red giant branch and clump stars. This last point also
proves the need for a reliable reference model before carrying out the
inversion. This weakness has also been observed for other numerical
exercises were the so-called cross-term errors could contribute very
significantly to the total error budget of the inversion and even
dominate other errors. This is radically different from inversions on
the main sequence and is due to both the small number of modes
and the large radial extent of the ionization zones, leading to more
widespread differences in �1 from one model to the other.

In addition to testing the use of seismic constraints, we also car-
ried out in Section 3.4 inversions for an artificial target from Sonoi
et al. (2015) including an atmospheric model from an averaged
hydrodynamical simulation. For this target, we used both adiabatic
and non-adiabatic frequencies to carry out the inversion. These tests
illustrated the impact of surface effects and the importance of cor-
recting them. It should be noted that none of the current methods
seemed to work perfectly, as error compensations were sometimes
observed and that directly implementing the corrections as free pa-
rameters in the SOLA method provided inaccurate fits of the target
function of the inversion.

In Section 4, we carried out mean density inversions on observed
red giants in eclipsing binary systems from the studies of Gaulme
et al. (2016) and Brogaard et al. (2018). We first showed that us-
ing individual frequencies, corrected for surface effects using the
approach of Ball & Gizon (2014), lead to a much better agreement
in terms of mass and radius than simply using scaling relations
or global seismic indices. Furthermore, we showed that the mean
density inversions could provide either further small corrections to
the mean density obtained from forward modelling or an additional
verification step. Combining the inverted mean density to the radii

MNRAS 482, 2305–2319 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/482/2/2305/5079687 by U
niversity of Liege user on 27 Septem

ber 2021



2318 G. Buldgen et al.

Figure 14. Masses and radii values obtained from eclipses observations, seismology, and combining the inverted mean densities using various surface
corrections to the dynamical radii measures.

determinations from eclipses provided an overall good agreement
in terms of masses for these stars. However, these test cases also
demonstrate the importance of classical constraints for the mod-
elling of red giants, since the most significant improvement came
from using the dynamical radii values. Indeed, the mean density of
these stars was already very accurately determined through forward
modelling.

A couple of conclusions can be drawn from this last point. Firstly,
pure seismic modelling using only radial modes might lead to de-
generacies since the frequencies will be mostly sensitive to the
mean density of the star. Secondly, directly using the individual fre-
quencies might lead to underestimated uncertainties and the seismic
constraints might dominate the classical constraints. Therefore, us-
ing directly an inverted value for the mean density, alongside a
precise and accurate value for the luminosity, the [Fe/H] and the
radius might provide a more direct and balanced approach to the
modelling of red giant stars. Other seismic constraints could also
be used, such as the asymptotic period spacing or ratios of radial
oscillation frequencies as is done for Cepheids and other classi-
cal pulsators. The application of such approaches to an extended
set of eclipsing binaries will provide a unique opportunity to test
the reliability of seismic modelling and the importance of classical
constraints.

In the near future, using such approaches alongside constraints
from the second Gaia data release will help better understand the
properties of red giants. Providing more accurate masses is indeed
crucial to determine the properties of various stellar populations in
the Galaxy but also for example to pinpoint the properties of addi-
tional mixing at the base of the convective envelope, manifesting
itself through the so-called RGB bump (Alongi et al. 1991; Cassisi
et al. 2011; Khan et al. 2018). In stellar clusters, accurate masses
could also be used to characterize mass-loss on the red giant branch
(Handberg et al. 2017), one of the major issues in current stellar
evolution models.
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