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Asteroseismology can provide the accurate and precise estimates of the stellar properties (l.e., density, surface gravity, mass, radius and age) that are
needed to make robust inference on the properties of the planets. Building on the experience with CoRoT and Kepler, and in preparation for TESS and
PLATO, we are developing and testing procedures that will enable us to:

robustly global properties of uncertainties on the micro and macro back improved models to grids used

determine efficiently and : 2 systematically explore the impact of 3 stress test stellar models, and feed
main-sequence and evolved stars physics on the inferred stellar properties to infer global stellar properties

ASTEROSEISMIC INFERENCE ON A MASSIVE SCALE (AIMS)

Our code (Reese et al. 2016, http://bison.ph.bham.ac.uk/spaceinn/aims/) relies on a Monte-Carlo-Markov-Chain approach to find a representative set of
models which reproduce a given set of classical and asteroseismic constraints. These models are obtained by interpolation from a pre-calculated grid
thereby increasing computational efficiency.
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ACOUSTIC GLITCHES

Model iIndependent characterisation of sharp-structure variations in stellar interiors (convective-envelope depths, signatures of helium ionisations), which
can be used e.g. to set constraints on the efficiency of atomic diffusion, convective-envelope undershooting, and to infer the envelope He abundance.

e.g. Kepler exoplanet host star Kepler-408
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