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ABSTRACT

Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of
stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We propose a test of the extension
of extra-mixing in two relevant evolutionary phases based on period spacing (ΔP ) of solar-like oscillating giants.
From stellar models and their corresponding adiabatic frequencies (respectively, computed with ATON and LOSC
codes), we provide the first predictions of the observable ΔP for stars in the red giant branch and in the red clump
(RC). We find (1) a clear correlation between ΔP and the mass of the helium core (MHe); the latter in intermediate-
mass stars depends on the MS overshooting, and hence it can be used to set constraints on extra-mixing during MS
when coupled with chemical composition; and (2) a linear dependence of the average value of the asymptotic period
spacing (〈ΔP 〉a) on the size of the convective core during the He-B phase. A first comparison with the inferred
asymptotic period spacing for Kepler RC stars also suggests the need for extra-mixing during this phase, as evinced
from other observational facts.
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1. INTRODUCTION

Despite the numerous efforts undertaken to understand con-
vection in stars, the treatment of this process in stellar model-
ing is still rather simplistic and one of the major uncertainties
affecting the predictions of stellar evolution theory. In partic-
ular, while convection is a highly non-local phenomenon, the
extension of the convective region is determined by local crite-
ria such as Schwarzschild and Ledoux ones. Nowadays, there
is clear evidence that the current description of convection is
unsatisfactory: numerical simulations, laboratory experiments,
and disagreement between theoretical predictions and observa-
tions. For instance, mixing beyond the convective core formal
limit during the main sequence (MS) is needed to reproduce the
morphology of color–magnitude diagrams of stellar clusters and
the properties of binary systems (see, e.g., Maeder & Mermil-
liod 1981; Andersen et al. 1990; Ribas et al. 2000). Similarly,
observational evidence suggests that the extension of the central
mixed region during the core He-burning (He-B) phase should
be larger than determined by the Schwarzschild criterion. In
fact, this extension has important consequences for the dura-
tion of the He-B phase, but also in the following evolutionary
phases, determining, for instance, the ratio between asymptotic
giant branch and horizontal branch stars. Moreover, the differ-
ent chemical profiles of C and O from different kinds of mixing
directly affect the oxygen abundance of white dwarfs (see, e.g.,
Straniero et al. 2003). The nature of the mechanism(s) induc-
ing extra-mixing, both in MS and He-B phases, as well as its
extension is still debated (see, e.g., Chiosi 2007 for review).

Stellar seismology tries to answer some of these questions
by looking for seismic indices based on different oscillation
modes and asymptotic relationships, or deviations with respect
to them (see, e.g., Noels et al. 2010 for review). In this context,
the most powerful diagnostics are those based on oscillation
modes that propagate close to the central region, in particular,

gravity modes (g-modes) and mixed gravity-pressure modes.
Some of these seismic indices were successfully applied to
individual stars showing different kind of pulsations: solar-like
oscillations in MS stars and sub-giants (Di Mauro et al. 2003;
Miglio & Montalbán 2005; Deheuvels & Michel 2011) and B-
type pulsators (Aerts et al. 2003; Dziembowski & Pamyatnykh
2008; Degroote et al. 2010).

Here, we show that solar-like oscillation modes in G-K red
giants (RGs) provide a most effective tool to test convective-
core overshooting, both during the MS and the core-He-burning
phase. Moreover, thanks to Kepler and CoRoT observations,
such tests can potentially be performed on a large number
(thousands) of stars encompassing a wide range of stellar
parameters.

2. RED GIANTS: INTERNAL
STRUCTURE AND EVOLUTION

The evolution of post-MS stars is characterized by a con-
tracting He core and an expanding H-rich envelope, with an
H-burning shell in between that becomes thinner and thinner as
the star evolves on the red giant branch (RGB). The contracting
core releases thermal energy, part of which is used to increase the
temperature as long as the gas is not too degenerate, but which
no longer produces heating in highly degenerate conditions. For
a given He-core mass, there is a maximum temperature that can
be reached by core contraction as any further contraction leads
to gas cooling. Highly degenerate cores cannot ignite helium
burning if their mass is lower than about 0.475 M�. Such stars
keep ascending the RGB until their He cores reach this critical
value (see, for instance, Kippenhahn & Weigert 1990; Sweigart
et al. 1990).

For total masses lower than about 2 M�, the He-core mass
at the onset of the He flash and at the start of the post flash
He-B phase (ZAHeB) is thus about the same, i.e., ∼0.475 M�.
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With the increase of the total mass, the electron degeneracy level
is lower and the He-core mass required for He ignition decreases.
After reaching a minimum value, the He-core mass increases
again following the total mass, as a result of the larger and larger
convective core mass during the MS phase (Girardi et al. 1998;
Castellani et al. 2000 and references therein). Stars with the
minimum He-core mass (∼0.33 M�, the lowest mass for a pure
He star to start burning He—see, e.g., Kippenhahn & Weigert
1990) then define a transition between two different behaviors of
RG evolution (Sweigart et al. 1990). Helium-burning stars with
masses smaller than the transition stellar mass (Mtr) populate
the so-called red clump (RC; Girardi et al. 1998). Since the
luminosity of He-B stars depends mainly on the He-core mass,
the luminosity of RC stars is approximately constant, it rapidly
decreases near the transition, and then increases drastically as
the total mass increases. The stellar mass at which the transition
occurs depends on the He-core mass at the end of the MS,
and hence on the chemical composition and on the amount of
overshooting in the MS models. He-B stars with masses close to
the transition mass form the so-called secondary clump (Girardi
1999).

The models presented in this paper were computed with the
stellar evolution code ATON (Ventura et al. 2008). We followed
the evolution from pre-MS to central He exhaustion of stellar
models with masses from 0.7 to 4.0 M�, following the He-flash
for low-mass models. Figure 1 (upper panel) shows the
He-core mass at He ignition as a function of the stellar mass
for models computed without and with core overshooting during
the MS evolution. For the chemical composition considered, the
transition mass is 2.4 M�, while the value decreases to 2.2 M�
for models with overshooting. A similar decrease is obtained by
decreasing the metallicity by a factor of two.

3. ADIABATIC OSCILLATION PROPERTIES:
PERIOD SPACING

The properties of oscillation modes depend on the behavior
of the Brunt–Väisälä (N) and Lamb (S�) frequencies. Because of
the high-density contrast between the core and the envelope, the
RG oscillation spectrum is characterized by a large number of
mixed p-g modes in addition to the radial ones (see, for instance,
Christensen-Dalsgaard 2004; Montalbán et al. 2010 for details).

In RGs, once the temperature for He ignition is reached, con-
vection appears in the nuclear burning core and is accompanied
by the expansion of the star central regions. The core structure is
therefore radically different from that of an RGB star, character-
ized by a high-density electron-degenerate radiative helium core
(see Figure 2). Both the presence of a convective core and the
decrease of the density contrast (ρc/〈ρ〉) determine significant
changes in the Brunt–Väisälä frequency distribution near the
core, and therefore in the seismic properties of dipole modes
(Montalbán et al. 2010). The asymptotic approximation for
g-modes (Tassoul 1980) predicts that the periods of two modes
of the same degree (�) and consecutive order (n) are separated
by a constant value 〈ΔP 〉a:

〈ΔP 〉a = 2π2

√
�(� + 1)

1
∫

N/rdr
. (1)

In the He-B model, the expansion of the central layers leads
to a lower N maximum, and its location is displaced at larger
stellar radius. Moreover, the central convective regions do not
contribute to the integral in Equation (1) (see Figure 2, upper
panel, for a detailed description). The period spacing between

Figure 1. Upper panel: He-core mass at He ignition vs. stellar mass. Solid line
and dots correspond to models without overshooting during the MS phase, and
dashed line and open circles to models computed with diffusive overshooting
(Ventura et al. 1998). Central panel: average period spacing during the He-B
phase (0.9 > YC > 0.1) vs. stellar mass. Black dots correspond to 〈ΔP 〉a
and gray ones to 〈ΔP 〉th-obs. Lower panel: as central panel for models with
overshooting during MS phase. Vertical lines indicate the transition mass
for no-overshooting models (small-dashed line) and MS overshooting ones
(dotted line).

(A color version of this figure is available in the online journal.)

consecutive g-modes, as determined from Equation (1), is
therefore significantly smaller in the RGB model (60 s) than
in the He-B one (240 s).

The asymptotic approximation is, however, no longer valid
for mixed modes (those observed in RGs). For a detailed com-
parison with the observations, we therefore compute adiabatic
oscillation frequencies using the Eulerian version of the code
LOSC (Scuflaire et al. 2008). The results are shown in the lower
panels of Figure 2 where we plot the mode inertia of radial and
dipole modes, as well as the period separation between dipole
modes of consecutive radial order n(ΔP = P (n + 1) − P (n)),
as a function of the mode frequencies. In addition to a sig-
nificant difference in the period spacing itself, the differences
between the spectra can be summarized as follows: (1) in the
RGB model, the inertia of � = 1 pressure-dominated modes
(corresponding to local minima in E) is closer to that of the
radial models, indicating a weaker coupling between gravity
and acoustic cavities compared to the He-B phase. This is also
evident from the gravity-dominated modes of RGB, for which
ΔP is almost constant (as expected for pure g-modes) except
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Figure 2. Upper panels: density distribution and � = 1 propagation diagram for a 1.5 M� star with radius ∼12 R�: in the ascending red giant branch (RGB, left) and
in the red clump (He-B, right). Horizontal dotted lines denote the frequency domain of solar-like oscillations. The solid line is the Brunt–Väisälä frequency, and the
dashed one the Lamb frequency for � = 1. The dash-dotted line represents density (scaled on right axis). The He-B model has a small convective core (rcc � 0.002 R

and mcc � 0.08 M) and its central density is 10 times smaller than for the RGB one. Due to electron degeneracy, N in the RGB model is significantly lower in the
deep central layers than near the H-burning shell. Lower panels: corresponding plots of inertia (E) vs. frequency for the � = 0 (circles) and 1 (triangles) modes. The
vertical dashed lines correspond to the horizontal ones in the upper panels. The gray crosses and lines represent period separation between consecutive dipole modes
vs. frequency (right axis). The horizontal thin-dashed lines correspond to 〈ΔP 〉a.

(A color version of this figure is available in the online journal.)

for the modes describing the minimum of inertia, while for the
g-p mixed modes of the He-B model, the deviation of ΔP from
a constant value is more important. (2) The density of the � = 1
modes for the He-B model is lower than for the RGB one (by a
factor of three for the models shown in Figure 2).

To compare theoretical predictions and observational results,
it is mandatory to define theoretical indices as close as pos-
sible to the observational ones. To derive the average period
spacing equivalent to that measured in Bedding et al. (2011)
and Mosser et al. (2011), we should identify, among all the
theoretical modes, those that are most likely to be observed,
and thus contribute to the observed period spacing value. That
would require non-adiabatic computations, which are very time
consuming and unfeasible for the large number of models con-
sidered in this study. Moreover, from a theoretical point of view,
the detectability of mixed modes not only depends on the mod-
els (stellar structure and time-dependent convection), which are
subject to uncertainties, but it also strongly depends on the du-
ration of observations (Dupret et al. 2009) and to a lesser extent
on the instrument. Therefore, following an adiabatic approach,
we consider the modes with lower inertia as those most likely to
be detected. These are also the modes contributing to significant
deviations from the uniform ΔP predicted by the asymptotic
approximation (minima in ΔP , see Figure 2, lower panels). We
define 〈ΔP 〉th-obs, a theoretical estimation of the measurable pe-
riod spacing from observed oscillation spectra, following the
same procedure as in Bedding et al. (2011) and based on the
properties of observed oscillation spectra. We select oscillation
modes with angular degree � = 0 and 1 and with frequencies ν
in the expected solar-like domain, defined as 0.75 < ν/νmax <

1.25, where νmax = M(M�)R(R�)−2(Teff/5777)−0.5 3050 μHz.
Around each pressure-dominated dipole mode, we consider the
values ΔP (n) involving k modes with frequencies lower and
higher than that of the inertia minimum. Our choice (k = 2) is
based on current observations (three or four values for each ra-
dial order). The ΔP (n)’s obtained in this way are then averaged
in the solar-like frequency domain to obtain 〈ΔP 〉th-obs.

The behavior of 〈ΔP 〉th-obs as a function of the average large
frequency separation is shown in Figure 3 for models in the
RGB and in the central He-B phase with different chemical
composition. These results are in good agreement with the recent
observational results obtained with Kepler and CoRoT, where
the clear difference between the period spacing of the RGB and
He-B models allowed us to use 〈ΔP 〉 to identify the evolutionary
state of RGs with comparable 〈Δν〉 or νmax (Bedding et al. 2011;
Mosser et al. 2011).

4. PERIOD SPACING IN THE RED-CLUMP AND
SECONDARY-CLUMP STARS: A PROXY

FOR THE He-CORE MASS

Both the predicted and observed (see Bedding et al. 2011;
Mosser et al. 2011) period spacings show significant scatter in
He-B stars. This dispersion is partly due to the different masses
of the stars, chemical compositions, and central helium mass
fraction (YC). Mosser et al. (2011) identified the high-Δν–low-
ΔP tail as corresponding to the secondary clump, and we will
show here that asymptotic and “measurable” values of the period
spacing contain additional information about the structure and
previous evolution of the star.
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Figure 3. Theoretical “observable” period spacing vs. large frequency separation
of radial modes. Asterisks: RGB models with masses 0.9, 1.0 1.5, 1.6, and
1.7 M�and chemical composition (Z = 0.02, Y = 0.278). Solid dots: He-B
models with masses between 0.7 and 4.0 M� and chemical compositions (Z, Y ):
(0.02, 0.278); (0.01, 0.278);(0.02, 0.25); (0.02, 0.4). Each color corresponds to
models of different stellar masses.

(A color version of this figure is available in the online journal.)

〈ΔP 〉a depends mainly on the value of the ρc/〈ρ〉 (density
contrast), on the dimension of the convective core, and on the
location of the H-shell which gives rise to a local maximum of
N. All these quantities change during the He-B phase and they
do it differently depending on the stellar mass. In Figure 1 (black
dots in central panel), we plot 〈ΔP 〉a for models with masses
between 0.7 and 3.5 M� during the He-B phase as a function of
the stellar mass. By comparison with the corresponding curve of
the upper panel, it seems evident that there is a direct correlation
between 〈ΔP 〉a and the mass of the He-core. 〈ΔP 〉a is almost
constant for low-mass stars that begin to burn He in a degenerate
core of 0.475 M�and presents a minimum at the transition mass,
which also corresponds to the minimum of the He-mass core
(∼0.33 M�). For higher masses, 〈ΔP 〉a increases with the stellar
mass, such as the mass of the He-core (∼0.1 MT at the end
of MS).

〈ΔP 〉th-obs, as described in the previous section, involves
additional information related to the coupling between acoustic
and gravity cavities, and hence depends on the properties of the
evanescent region which can be characterized, roughly speaking,
by the value of the integral

∫
(σc)−1((σ 2 − N2)(S� − σ 2))1/2dr

in the region between the He-core and the envelope. The gray
dots in Figure 1 (central panel) represent the corresponding
values of 〈ΔP 〉th-obs for models during the He-B phase. The
difference between asymptotic and “observable” values also
depends on the stellar mass for low-mass models. That should
not be surprising since the central density of models with 0.7 M�
and 1.5 M�, their He-core mass, and total radius are almost the
same, which leads to a very different density (and temperature)
distributions in their envelope, and hence to a very different
coupling. Nevertheless, there is still a clear dependence of
〈ΔP 〉th-obs on the He-core mass.

〈ΔP 〉th-obs, like 〈ΔP 〉a, presents a minimum corresponding
to Mtr, whose value strongly depends on the extension of the
mixed central region during the MS. In Figure 4, we plot
the “observable” period spacing, for models with and without
overshooting during the MS, as a function of the He-core mass.

Figure 4. Theoretical “observable” period spacing vs. He-core mass for RGB
models (gray asterisks). Black dots: He-B (0.9 � YC � 0.1) models with
masses between 0.7 and 4.0 M� without overshooting. Open gray circles: the
same for MS-overshooting models and stellar mass between 1.4 and 3.0 M�.

Two linear relationships appear between 〈ΔP 〉th-obs and MHe:
the first for low-mass RGB models with ΔP decreasing as MHe
increases due to the larger contrast density as the star evolves,
the second one for He-B models. For the latter, both families
of models follow the same relation, with the only difference
being the mass of the models occupying the same location in
that diagram.

In the framework of adiabatic calculations, that is, assuming
the amplitude of modes directly linked to

√
E, we use the

ratio between the inertia of a mixed mode and that of the
corresponding pressure-dominated one to flag that mode as
detectable, and thus contributing to the average period spacing
value. That ratio depends on details of the stellar structure,
and therefore on stellar parameters such as mass, age, and
evolutionary state. In fact, we should expect to observe less
mixed modes as the inertia ratio increases, which is the case
for models with better trapped dipole modes. We are aware that
this detectability limit is an arbitrary choice since the relation
between inertia and amplitude is only a proxy, nevertheless,
the current available non-adiabatic computations confirm that
assumption (Dupret et al. 2009; Grosjean et al. 2013). Moreover,
we can expect more modes to be detected in longer time series,
changing the value of ΔP obtained from the mean value of
individual measured period spacings, and with 〈ΔP 〉a being an
upper limit.

To see how our results depend on the choice of the detectabil-
ity limit and on the number of mixed modes considered as
observables, we estimated 〈ΔP 〉th-obs while changing these pa-
rameters. In Figure 5, we compare the results obtained for He-B
models, adopting k = 2 and a limit value of the inertia ratio (i.e.,
the standard procedure used in this work in Figures 1, 3, and 4)
with the 〈ΔP 〉th-obs values that results when four mixed modes at
lower and higher frequency of each pressure-dominated mode in
the solar-like frequency domain are considered, and that without
imposing any detectability limit. An additional increase of k does
not introduce noticeable changes to the behavior of 〈ΔP 〉th-obs.
Note that 〈ΔP 〉th-obs for lowest mass models is only slightly
affected, and that the more important effect is obtained for sec-
ondary clump models. It is worth mentioning that in the case of
secondary clump stars, such a large number of detected mixed
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Figure 5. Theoretical “observable” period spacing vs. He-core mass for models
computed without overshooting. Black dots: 〈ΔP 〉th-obs computed with our
standard method (see the text); gray open circles: 〈ΔP 〉th-obs computed taking
four mixed modes at lower and higher frequencies than that of the pressure-
dominated modes, and without imposing any detectability limit.

modes around the pressure-dominated ones allow us to derive
ΔP as a function of frequency, and then to do a detailed analysis
of their stellar structure.

We stress that for a theoretical interpretation of the obser-
vations, it is mandatory to use definitions of theoretical and
observational indices that are as close as possible. That is true
for 〈ΔP 〉th-obs, but also for 〈Δν〉 or 〈δν〉. Even if the specific val-
ues of 〈ΔP 〉th-obs may change with the number of mixed modes
considered, a linear relation between 〈ΔP 〉th-obs and He-core
mass remains. The k value must be adapted to the current obser-
vations, i.e., changing according to the duration of time series
and instrument features.

Period spacing in He-B red giant stars provides a stringent
test of the central mixing during the H-MS. However, to
successfully exploit this possibility, spectroscopic constraints on

the chemical composition are required, together with an accurate
estimate of stellar mass: seismic constraints (other than period
spacing) will be crucial in this respect.

5. PERIOD SPACING AS A TEST OF OVERSHOOTING
AND MIXING DURING THE CORE-HELIUM

BURNING PHASE

The value of the asymptotic period spacing depends on the
central distribution of N, and hence on the size of the convective
core. Figure 6 shows 〈ΔP 〉a as a function of the convective-core
radius (Rcc) for models in the He-B phase, with YC between
0.9 and 0.1, and masses from 0.7 to 4.0 M�. As can be seen
from Figure 6, the relation between 〈ΔP 〉a and Rcc is, to a good
approximation, linear.

For a given mass, the trend of 〈ΔP 〉a changes when YC �
0.3 due to the much lower temperature dependence of the
nuclear reaction 12C(α, γ )16O which, at that stage, becomes
the dominant energy source in the core. For massive stars, Rcc
and 〈ΔP 〉a decrease for models with YC < 0.3 because ρc
increases as He is exhausted. For models with YC � 0.3, the
mass and radius of the convective core follow a linear relation,
which, however, disappears when 12C(α, γ )16O takes over the
3α reaction: in that case, Mcc increases even more quickly but
Rcc decreases.

Recently, Christensen-Dalsgaard (2012) and Mosser et al.
(2012) showed that 〈ΔP 〉a can be inferred from the observed
period spacing of dipole mixed modes. Checking the procedure
with our theoretical frequencies for 1.5 M� models of the He-B
phase, we were able to recover the asymptotic period spacing
with a precision of 2% when we take into consideration 6–8
mixed modes for each radial order, such as in Mosser et al.
(2012; see their Figure 2).

A first comparison between the predictions of our models
(using Equation (1)) and the values of 〈ΔP 〉a derived by Mosser
et al. (2012) for a sample of Kepler giants is shown in Figure 7.
All these models were computed without extra-mixing during
the MS and during the He-B phases. It is clear that for the
clump stars (low-mass stars with Δν ∼ 4 μHz), these theoretical
models systematically underestimate 〈ΔP 〉a by ∼20%.

Figure 6. Asymptotic period spacing vs. convective core radius for models with masses between 0.7 and 4.0 M� in the He-B phase (solid dots: 0.9 � YC > 0.3; open
circles: 0.3 � YC � 0.1). The regression line obtained from these points: 〈ΔP 〉a = 17.35 + 1.06176 × 104 × Rcc(R�). Black asterisks correspond to two models of
1.5 M� at YC = 0.5, without and with instantaneous and adiabatic overshooting during the He-B phase.
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their ages depend mainly on the MS extra-mixing (38%
larger for stars with MS overshooting) but are chemical
composition independent (Sweigart et al. 1990).

2. The seismic properties of stars in the RC seem independent
of core extra-mixing during MS, as low-mass stars reach
the same kind of structure at He ignition. We have shown,
however, that a linear relation exists between the asymptotic
period spacing of dipole modes and the extension of the
convective core in the He-B phase. Non-extra-mixing He-
B models predict 〈ΔP 〉a ∼ 20% smaller than values inferred
from observations. If 〈ΔP 〉a can be reliably derived from
oscillation spectra, as suggested by Mosser et al. (2011)
and Christensen-Dalsgaard (2012), then the basic seismic
properties of oscillation spectra for RC stars can be used to
constrain the extension and properties of core extra-mixing
during the He-B phase.

When individual frequencies of dipole mixed modes will
be available, a more direct comparison between models and
observations shall be carried out, and will provide information
not only on the extension of the central mixed region, but also
on the detailed properties of the chemical composition gradient
inside the star.
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