Driving mechanism and energetic aspects in *YDoradus* stars

M.-A. Dupret

A. Grigahcène

J. De Ridder

R. Scuflaire A. Noels M. Gabriel

Liège, 5th of May 2006

γ Doradus stars Driving mechanism

Main driving occurs in the transition region where the thermal relaxation time is of the same order as the pulsation periods

Driving mechanism

Flux blocking at the base of the convective envelope

→ Motor thermodynamical cycle

$$\delta r(r,\theta,\phi,t) = \delta r(r) Y_{l}^{m}(\theta,\phi) e^{\sigma_{i}t} e^{i\sigma_{r}t}$$

$$\sigma_{i} = \frac{-1}{2 \sigma_{r}^{2}} \frac{\int_{0}^{M} \frac{\delta T}{T} \frac{d \delta L}{d m} d m}{\int_{0}^{M} \delta r^{2} d m}$$

BAG meeting, asteroseismology of γ Dor stars Liège, 5th of May 2006

 γ Doradus

Driving mechanism

 γ Doradus

Flux blocking at the base of the convective envelope

→ Motor thermodynamical cycle

BAG meeting, asteroseismology of $\gamma \text{Dor stars}_{0}$, $T_{eff} = 7000 \text{ K}$, $\alpha = 2$, Mode $\ell = 1$, g_{50} Liège, 5th of May 2006

Convection – pulsation interaction: Work integral

 γ Doradus

Driving mechanism

 $M = 1.6 M_0$ $T_{eff} = 7000 K$ $\alpha = 2$ Mode $\ell = 1, g_{50}$

WFRr: Radial radiative
flux term1WFrc: Radial convective
flux term1WFh: Transversal convective
and radiative flux1

$$\begin{split} W_{\rm tot} &= -\int_0^m \Im \left\{ \frac{\delta \rho^* \, \delta p}{\rho \, \rho} \right\} {\rm d}m \\ &= -\int_0^m (\Gamma_3 - 1) \, \Re \left\{ \frac{1}{\sigma} \frac{\delta \rho^*}{\rho} \frac{{\rm d} \, (\delta L_{\rm R} + \delta L_{\rm c})}{{\rm d}m} \right\} {\rm d}m \\ &- \int_0^m \Im \left\{ \frac{\delta \rho^* \, \delta p_{\rm t}}{\rho \, \rho} \right\} {\rm d}m \\ &+ \int_0^m \frac{3}{2} (\Gamma_3 - 1) \Im \left\{ \frac{\delta \rho^* \, \delta p_{\rm t}}{\rho \, \rho} \right\} {\rm d}m \end{split}$$

BAG meeting, a Liège, 5th of Ma

17

6400

 ${\rm T}_{\rm eff}$

Stabilization mechanism

γ Doradus

Stabilization mechanism

Radiative damping in the g-modes cavity

Stabilization mechanism

Radiative damping in the g-modes cavity

$$\sigma_{i} = \frac{-1}{2\sigma_{r}^{2}} \frac{\int_{0}^{M} \frac{\delta T}{T} \frac{d \delta L}{d m} dm}{\int_{0}^{M} \delta r^{2} dm}$$
$$\frac{\delta L}{L} = 2\frac{\delta r}{r} + 3\frac{\delta T}{T} - \frac{\delta \kappa}{\kappa} - \frac{\delta \rho}{\rho}$$
$$+ \frac{d \delta T}{d T} - \frac{d \delta r}{d r}$$
$$\sigma_{i} = \frac{\int_{0}^{R} \frac{-L}{d \ln T/d r} \frac{\delta T}{T} \frac{d^{2} (\delta T/T)}{d r^{2}} dr}{2\sigma_{r}^{2} \int_{0}^{R} \delta r^{2} dm}$$

γ Doradus

Stabilization mechanism

Radiative damping in the g-modes cavity

Instability strips

Instability strips

$$\overline{\rho \vec{V} \vec{V}} = \overline{p}_T 1 - \overline{\beta}_T \qquad -\delta \left(\nabla \cdot \overline{\beta}_T \right) = \Xi_r Y_1^m(\theta, \phi) + r \Xi_h \nabla_h Y_1^m(\theta, \phi)$$

Radial component of the equation of momentum conservation

$$\sigma^{2}\delta r = \frac{d\delta\Phi}{dr} - \frac{1}{\rho}\frac{d\delta\rho_{g}}{dr} - \frac{1}{\rho}\frac{d\delta\rho_{turb}}{dr} + g\frac{\delta\rho}{\rho} + \frac{2A-1}{A}\frac{\overline{p}_{T}}{r\rho}\frac{\partial\delta r}{\partial r} + \frac{\Xi_{r}}{\rho}$$

Transversal component of the equation of momentum conservation

$$\sigma^{2} \delta r_{H} = \frac{1}{r} \left(\delta \Phi + \frac{\delta p}{\rho} + \left(\frac{r \Xi_{h}}{\overline{\rho}} + \frac{2A - 1}{A} \frac{\overline{p}_{T}}{\overline{\rho}} \left(\frac{\delta r}{r} - \frac{\delta r_{H}}{r} \right) \right) \right)$$

 σ : Angular pulsation frequency

A : Anisotropy parameter A=1/2 for isotropic turbulence

Work integral

$$W = \int_0^M \mathrm{d}m \,\Im\left\{\frac{\delta\rho^*}{\rho}\frac{\delta p}{\rho}\right\}$$

+
$$(1/\rho) \left(\xi_r^* \Xi_r + \ell(\ell+1)\xi_h^* \Xi_h\right)$$

$$+ \frac{2A-1}{A} \frac{p_{\mathbf{t}}}{\rho} \left[\frac{\xi_r^*}{r} \frac{\mathrm{d}\xi_r}{\mathrm{d}r} + \ell(\ell+1) \frac{\xi_h^*}{r} \left(\frac{\xi_r}{r} - \frac{\xi_h}{r} \right) \right] \Big\}$$

$$\Xi_{\rm h} = (...) + \frac{1}{r^3} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^3 P_{\rm turb} \frac{\overline{V_r \delta V_h + V_h \delta V_r}}{\overline{V_r^2}} \right)$$
$$\frac{\overline{V_r \delta V_h + V_h \delta V_r}}{\overline{V_r^2}} = \delta V V_{\rm h} = (...) + C \frac{\mathrm{d} \delta r_{\rm h}}{\mathrm{d}r}$$

 $P_{turb} \longrightarrow 0$ and dP_{turb} / dr discontinuous at the bottom of the convective envelope

singularity of the equations

→ unphysical discontinuity of the eigenfunctions

$$\Xi_{\rm h} = (...) + \frac{1}{r^3} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^3 P_{\rm turb} \frac{\overline{V_r \delta V_h + V_h \delta V_r}}{\overline{V_r^2}} \right)$$
$$\frac{\overline{V_r \delta V_h + V_h \delta V_r}}{\overline{V_r^2}} = \delta V V_{\rm h} = (...) + C \frac{\mathrm{d} \delta r_{\rm h}}{\mathrm{d}r}$$

Non-local treatments:

$$\delta VV_{h\,\mathrm{NL}}(\zeta_0) = \int_{-\infty}^{+\infty} \delta VV_{h\,\mathrm{L}} e^{-b|\zeta-\zeta_0|} \mathrm{d}\zeta \quad ; \quad \mathrm{d}\zeta = \mathrm{d}\log P$$

Improves the things (continuity) but problem still present

Influence of Reynolds stress: Work integral

Photometric amplitudes and phases and mode identification

Hypotheses

- Lagrangian displacement Distortion of the stellar surface
- Thermal equilibrium in the local atmosphere

• Temperature :
$$\frac{\delta T}{T} = \frac{\partial \ln T}{\partial \ln T_{eff}} \frac{\delta T_{eff}}{T_{eff}} + \frac{\partial \ln T}{\partial \ln g} \frac{\delta g_{e}}{g_{e}} + \frac{\partial \ln T}{\partial \ln \tau} \frac{\delta \tau}{\tau}$$
$$• Flux : \qquad \frac{\delta F_{\lambda}}{F_{\lambda}} = \frac{\partial \ln F_{\lambda}}{\partial \ln T_{eff}} \frac{\delta T_{eff}}{T_{eff}} + \frac{\partial \ln F_{\lambda}}{\partial \ln g} \frac{\delta g_{e}}{g_{e}}$$
$$\bullet Limb darkening : \quad \frac{\delta h_{\lambda}}{h_{\lambda}} = \frac{\partial \ln h_{\lambda}}{\partial \ln T_{eff}} \frac{\delta T_{eff}}{T_{eff}} + \frac{\partial \ln h_{\lambda}}{\partial \ln g} \frac{\delta g_{e}}{g_{e}} + \frac{\partial \ln h_{\lambda}}{\partial \ln \mu} \frac{\delta \mu}{\mu}$$

Monochromatic magnitude variation

Liège, 5th of May 2006

Spectro-photometric amplitudes and phases and mode identification

y Doradus

3 frequencies: **f**₁=1.32098 c/d, **f**₂=1.36354 c/d, **f**₃=1.47447 c/d

Balona et al. 1994 — Strömgren photometry

Balona et al. 1996 — Simultaneous photometry and spectroscopy

Spectroscopic mode identification: $(\ell_1, \mathbf{m}_1) = (3, 3),$ $(\ell_2, \mathbf{m}_2) = (1, 1),$ $(\ell_3, \mathbf{m}_3) = (1, 1)$

 γ Doradus

Photometric mode identification

 $\alpha = 2 - FST$

 $\alpha = 2 - MLT$

 $\alpha = 1 - MLT$

Spectro-photometric amplitudes and phases

9 Aurigae

3 frequencies: **f**₁=0.795 c/d, **f**₂=0.768 c/d, **f**₃=0.343 c/d

Zerbi et al. 1994 — Simultaneous photometry and spectroscopy

Spectroscopic mode id. : $(\ell_1, |\mathbf{r}|)$ Aerts & Krisciunas (1996) $(\ell_3, |\mathbf{r}|)$

$$(\ell_1, |\mathbf{m}_1|) = (3, 1),$$

 $(\ell_3, |\mathbf{m}_3|) = (3, 1)$

Photometric mode identification

 $\alpha = 2 - FST$

 $\alpha = 2 - MLT$

 $\alpha = 1 - MLT$

Importance of ultraviolet observations (bracketing the Balmer discontinuity) Influence of the effective temperature $\delta m_{\lambda} = -\frac{2.5}{\ln 10} \varepsilon P_{\ell}^{m}(\cos i) b_{\ell \lambda}$ variations $\left[-(\ell-1)(\ell+2)\cos\left(\sigma t\right) + \left(\frac{\partial \ln F_{\lambda}^{+}}{\partial \ln T_{\rm eff}} + \frac{\partial \ln b_{\ell\lambda}}{\partial \ln T_{\rm eff}}\right) \left|\frac{\delta T_{\rm eff}}{T_{\rm eff}}\right| \cos\left(\sigma t + \psi T\right)\right]$ $-\left(\frac{\partial \ln F_{\lambda}^{+}}{\partial \ln g} + \frac{\partial \ln b_{\ell\lambda}}{\partial \ln g}\right) \left|\frac{\delta g_{e}}{g_{e}}\right| \cos\left(\sigma t\right)$ Gravity derivatives vary quickly in u-v Influence of the effective gravity variations Changes the weight of T_{eff} and g_e terms Stromgren, Geneva Helps for the mode identification and 42 systems are perfects gives constraints on $|\delta T_{eff}/T_{eff}|$

Conclusions

Driving mechanism and energetic aspects in γ Doradus stars

• Excitation mechanism: Convective blocking Time-Dependent convection does not inhibits the mechanism

• Mode identification, amplitudes and phases: Time-Dependent Convection required

Comparison : δ Sct red edge ($\ell=0, p_1$) γ Dor instability strip ($\ell=1$)

Unstable modes

The unknown correlation terms are obtained by perturbing the convective fluctuation equations. The solutions have the form:

$$\delta(\Delta X) = \delta(\Delta X) e^{i\vec{k}\cdot\vec{r}} e^{i\sigma t}$$

Horizonthal means

Integration over k_{θ} , k_{Φ} with $k_{\theta}^2 + k_{\Phi}^2 = A k_r^2$

Separation of the variables in term of spherical harmonics **Radial modes Non-radial modes**

BAG meeting, asteroseismology of γ Dor stars Liège, 5th of May 2006

Convection – pulsation interaction: Work integral

Solar-type oscillations

Difficulties: 1. Treatment in the efficient part of convection

Origin of the problem:

Difficulties:

2. Treatment of turbulent pressure perturbation

Increases the order of the system

Very stiff problem at the boundaries

Numerical instabilities

Theoretical damping rates \leftrightarrow line-widths observed by BiSON (Chaplin et al. 1997)

Theoretical damping rates \leftrightarrow line-widths observed by BiSON (Chaplin et al. 1997)

Theoretical damping rates \leftrightarrow line-widths observed by BiSON (Chaplin et al. 1997)

Theoretical damping rates \leftrightarrow line-widths observed by BiSON (Chaplin et al. 1997)

δ Scuti

Stables and unstable modes

$$\ell=2$$
 - 1.8 M_0 - $\alpha=1.5$

Time-dependent convection

1.4

7000

1.6

BAG meeting, asteroseismology of γ Dor stars Liège, 5th of May 2006

6000

Instability strips

Instability strips

Photometric amplitudes and phases

BAG meeting, asteroseismology of γ Dor stars Liège, 5th of May 2006

δ Scuti

Liège, 5th of May 2006

δ Scuti

Taille de l'enveloppe convective pour différentes températures effectives

Doradus Amplitudes et phases photométriques

Comparaison : convection gelée convection dépendant du temps

- Types spectraux
 - F et G
- Masses
 - 1 M₀ à 1.5 M₀
- Périodes
 - Quelques minutesModes p élevésFaibles amplitudes

Utility of our non - adiabatic code

- Excitation mechanisms
- Multi-colour photometry

Identification of the degree ℓ

Photometric amplitudes and phases in different filters

Non - adiabatic asteroseismology

Non adiabatic oscillations at the photosphere

Need of a non - adiabatic code for the confrontation between theory and observations

Introduction

Stellar pulsations

- Pressure modes
 Acoustic waves
- Gravity modes
 Buoyancy force

Asteroseismology

1) Non - radial non - adiabatic stellar oscillations

Splitting in spherical harmonics

p - modes → Acoustic waves G - modes → Buoyancy force BAG meeting, asteroset mology of γ Dor stars Liège, 5th of May 2006

Monochromatic magnitude variatior

4.2 δ ScutiTime dependent convection - MLT
Theory of M. GabrielRed edge of the instability stripRadial modes - 1.8 M₀ , $\alpha = 1.5$ Frozen convection

4.2 δ ScutiRed edge of the instability strip $\ell = 2 \mod s - 1.8 M_0$, $\alpha = 1.5$ Frozen convectionTime-dependent convection

Frozen Convection

Time-dependent convection

Bandes d'instabilité

Bandes d'instabilité

Bandes d'instabilité

β Cephei Multi-colour photometry

High sensitivity of the non - adiabatic results to the metallicity

> Z ↓ |δ T_{eff} / T_{eff}|

β Cephei : HD 129929

Contraintes sismiques sur l'overshooting

Slowly Pulsating B stars

Excitation mechanism

Work integral and luminosity variation from the center to the surface of the star

 $M = 4 M_0$ $T_{eff} = 13 955 K$ Z = 0.02

Mode $\ell = 1$ g₂₂

Slowly Pulsating B stars

Identification photométrique des modes

HD 74560

δ Scuti

Excitation mechanism

Work integral and luminosity variation from the center to the surface of the star

 $M = 1.8 \ M_0$ $T_{eff} = 7480 \ K$ $Z = 0.02 \ , \ \alpha = 1$

Radial fundamental mode

Modes stables et instables

$$\ell=0$$
 - $1.8~M_0$ - $\alpha=1.5$

Convection gelée

Convection dépendant du temps

Mécanisme d'excitation :

Travail intégré $M = 1.6 M_0$ $T_{eff} = 7000 K$ $\alpha = 2$ Mode $\ell = 1$, g₄₇

BAG meeting, asteroseismology of Liège, 5th of May 2006

Hydrodynamic equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \bullet (\rho \vec{v}) &= 0 \\ \frac{\partial (\rho \vec{v})}{\partial t} + \nabla \bullet (\rho \vec{v} \vec{v}) &= -\rho \nabla \Phi + \nabla \bullet P \\ \frac{\partial (\rho U)}{\partial t} + \nabla \bullet (\rho U \vec{v}) &= \rho \varepsilon_N - \nabla \bullet \vec{F}_R - P \otimes \nabla \vec{v} \end{aligned}$$

 $P = P_G + P_R$ $p = p_G + p_R$ P: Pressure tensor ; p : its diagonal component. $P_X = p_X \ 1 - \beta_X$

 \vec{F}_R Radiative Flux BAG meeting, asteroseismology of γ Dor stars Liège, 5th of May 2006

Mean equations

$$\begin{aligned} \frac{d\overline{\rho}}{dt} + \overline{\rho}\nabla \bullet (\vec{u}) &= 0 \\ \overline{\rho}\frac{d\overline{u}}{dt} &= -\overline{\rho}\nabla\overline{\Phi} - \nabla\left(\overline{p}_{G} + \overline{p}_{R} + \underline{\overline{p}_{T}}\right) + \nabla \bullet \left(\overline{\beta}_{G} + \overline{\beta}_{R} + \underline{\overline{\beta}_{T}}\right) \\ \overline{\rho}\overline{T}\frac{d\overline{s}}{dt} &= -\nabla \bullet \left(\overline{\overline{F}_{R}} + \overline{\overline{F}_{C}}\right) + \overline{\rho}\,\overline{\varepsilon}_{N} + \underline{\overline{\rho}}\,\overline{\varepsilon}_{2} + \overline{V}\,\overline{\bullet}\,\nabla(p_{G} + p_{R}) \\ \overline{\rho}\frac{d}{dt} \left(\frac{1}{2}\,\overline{\overline{\rho}V}^{2}\,\overline{\rho}\right) &= -\underline{\overline{\rho}}\,\overline{\varepsilon}_{2} - \overline{V}\,\overline{\bullet}\,\nabla(p_{G} + p_{R}) \end{aligned}$$

$$\overline{\rho}\overline{V}\overline{V} = \overline{p}_T 1 - \overline{\beta}_T$$
Reynolds stress tensor

$$\overline{\rho}\overline{\varepsilon}_2 + \overline{V} \bullet \nabla(p_G + p_R)$$
Dissipation of turbulent
kinetic energy into heat

$$p_T = \overline{\rho}V_r^2$$
Turbulent pressure
proseismology of γ Dor stars

BAG meeting, asteroseismology of γ Dor Liège, 5th of May 2006

Convective fluctuations equations

$$\overline{\rho} \frac{d}{dt} \left(\frac{\Delta \rho}{\overline{\rho}} \right) + \nabla \bullet \left(\rho \vec{V} \right) = 0$$

$$\overline{\rho} \frac{d\vec{V}}{dt} = \frac{\Delta \rho}{\overline{\rho}} \nabla \overline{\rho} - \nabla \Delta \rho - \frac{8\rho \vec{V}}{3\tau_c} - \rho \vec{V} \bullet \nabla \overline{u}$$

$$\frac{\Delta(\rho T)}{\overline{\rho T}} \frac{d\overline{s}}{dt} + \frac{d\Delta s}{dt} + \vec{V} \bullet \nabla \overline{s} = -\frac{\Gamma^{-1} + 1}{\tau_c} \Delta s$$

BAG meeting, asteroseismology of γ Dor stars Liège, 5th of May 2006

 ω_R Characteristic frequency of radiative energy lost by turbulent eddies

 τ_{C} Life time of the convective elements

 $\Gamma^{-1} = \omega_R \tau_C$ Convective efficiency

In the static case, assuming constant coefficients (Hp>>l !), we have solutions which are plane waves identical to the ML solutions.

Perturbation of the mean equations — — → Linear

Linear pulsation equations

Equation of mass conservation

$$\frac{\delta\rho}{\rho} + \frac{1}{r^2} \frac{d(r^2 \delta r)}{dr} - l(l+1) \frac{\delta r_H}{r} = 0$$

Radial component of the equation of momentum conservation

$$\sigma^{2}\delta r = \frac{d\delta\Phi}{dr} - \frac{1}{\rho}\frac{d\delta\rho_{g}}{dr} - \frac{1}{\rho}\frac{d\delta\rho_{turb}}{dr} + g\frac{\delta\rho}{\rho} + \frac{2A-1}{A}\frac{\overline{p}_{T}}{r}\frac{\partial\delta r}{\partial r} - \delta\left(\nabla_{j}\overline{\beta_{T}}^{rj}\right)$$

Transversal component of the equation of momentum conservation

$$\sigma^{2} \delta r_{H} = \frac{1}{r} \left(\delta \Phi + \frac{\delta p}{\rho} + \frac{r \operatorname{Visc} H}{\overline{\rho}} + \frac{2A - 1}{A} \frac{\overline{p}_{T}}{\overline{\rho}} \left(\frac{\delta r}{r} - \frac{\delta r_{H}}{r} \right) \right)$$

 σ : Angular pulsation frequency BAG meeting, asteroseismology of γ Dor stars Liège, 5th of May 2006 A: Anisotropy parameterA=1/2 for isotropic turbulence112

Equation of Energy conservation

$$i\sigma T\delta s = \delta \varepsilon_{N} + l(l+1)\frac{\delta r_{H}}{r}\frac{dL}{dm} - \frac{d\delta L_{R}}{dm} - \frac{d\delta L_{C}}{dm} + \frac{l(l+1)}{4\pi r^{3}\rho} \left(L_{R}\left(\frac{\delta T}{r(dT/dr)} - \frac{\delta r}{r}\right) - L_{C}\frac{\delta r_{H}}{r}\right) + \frac{l(l+1)}{\bar{\rho}r}FCH + \underbrace{\delta \varepsilon_{2}}_{\bar{\rho}} + \delta\left(\vec{V} \bullet \frac{\nabla(p_{G} + p_{R})}{\bar{\rho}}\right)$$

FCH : Amplitude of the horizontal component of the convective flux

Convective flux perturbation

Convective Flux :
$$\vec{F}_{c} = \overline{\rho T \Delta s \vec{V}}$$

$$\delta \vec{F}_{C} = \vec{F}_{C} \left(\frac{\delta \rho}{\overline{\rho}} + \frac{\delta T}{\overline{T}} \right) + \overline{\rho} \overline{T} \left(\overline{\delta(\Delta s)} \vec{V} + \overline{\Delta s} \delta \vec{V} \right)$$

$$\frac{\delta F_{Cr}}{F_{Cr}} = a_1 \frac{\delta r}{r} + a_2 \frac{d\delta r}{dr} + a_3 \frac{\delta r_H}{r} + a_4 \frac{\delta \rho}{\rho} + a_5 \frac{\delta s}{c_v} + a_6 \frac{\delta l}{l} + a_7 \frac{d\delta s}{ds}$$

$$a_7 \cong \frac{\omega_R \tau_C + 1}{i \sigma \tau_C + \omega_R \tau_C + 1} \cong \frac{1}{i \sigma \tau_C}$$
 where convection is efficient

Turbulent pressure perturbation

Turbulent pressure :
$$P_{turb} = \rho V_r^2$$
Perturbation :
$$\frac{\partial P_{turb}}{P_{turb}} = \frac{\partial \rho}{\rho} + 2 \frac{\partial V_r}{V_r}$$

$$\frac{\partial V_r}{V_r} = b_1 \frac{\partial r}{\partial r} + b_2 \frac{\partial \partial r}{\partial r} + b_3 \frac{\partial r_H}{r} + b_4 \frac{\partial \rho}{\rho} + b_5 \frac{\partial s}{c_v} + b_6 \frac{\partial t}{l} + b_7 \frac{\partial \delta s}{\partial s}$$

$$b_7 \approx \frac{a_7}{i \sigma \tau_c} \text{ near the surface}$$
Perturbation of the mixing-length
$$\frac{\partial l}{l} = \frac{\partial H_p}{H_p} H_p \text{ Pressure scale height}$$
BAG meeting, asteroseismology of γ Dor stars
Liège, 5th of May 2006

B

115

Convection – pulsation interaction: the Solar case

Difficulties: 2. Treatment of turbulent pressure perturbation

Convection – pulsation interaction: the Solar case

Difficulties:

2. Treatment of turbulent pressure perturbation

The worse numerical case gives the best fits with observations

Re $(1/(b \epsilon)) < 0$ at the left boundary Re $(1/(b \epsilon)) > 0$ at the right boundary

117

Liège, 5th of May 2006

Convection – pulsation interaction: the Solar case

the best fits with observations

Liège, 5th of May 2006

 $\operatorname{Re}(1/(b \epsilon)) > 0$ at the right boundary

118

Plan of the presentation

1. Introduction

2. Convection-pulsation interaction

2.1. The MLT theory of Gabriel

2.2. The case of solar-like oscillations

3. Confrontation to observations

4. Conclusions

Non-adiabatic stellar oscillations

δ S ≠ 0

Coupling between

- the **dynamical** equations
- the **thermal** equations

Confrontation to observations

Theoretical damping rates \leftrightarrow line-widths observed by GOLF

Confrontation to observations

Theoretical damping rates \leftrightarrow line-widths observed by GOLF

Problem:

This solution fitting very well the observations is subject to numerical instabilities near the upper boundary of the convective envelope.

They come from the turbulent pressure perturbation term.

Confrontation to observations

Theoretical work integrals for different β (mode l=0, p₂₂)

β**=**1

4

 $\beta = -0.5 + 0.4 i$

log T

3.8 3.6

3.8 3.6

123

δ Scuti Amplitudes et phases photométriques

Convection dépendant du temps

 $M = 1.8 M_0$ - $T_{eff} = 7150 K$ - $\alpha = 0.5$ 4.5 frozen frozen 180 time-dep 1 time-dep 1 4 time-dep 2 time-dep 2 150 3.5 $|\delta T_{eff} / T_{eff}|$ ψ_{T} lδ T_{eff}∕T_{eff} 120 3 ₹ 2.5 90 2 60 1.5 30 1 0 0.02 0.035 0.015 0.025 0.03 0.015 0.02 0.025 0.03 0.035 Q (d) Q (d)

δ Scuti Amplitudes et phases photométriques

Convection dépendant du temps

 $M = 1.8 M_0$ - $T_{eff} = 7130 K$ - $\alpha = 1$ 4.5 frozen frozen 180 time-dep 1 time-dep 1 4 time-dep 2 time-dep 2 150 3.5 $|\delta T_{eff} / T_{eff}|$ Ψ_{T} lδ T_{eff}∕T_{eff} 120 3 ₹ 2.5 90 2 60 1.5 30 1 0 0.015 0.02 0.025 0.03 0.035 0.015 0.02 0.025 0.03 0.035 Q (d) Q (d)

δ Scuti Amplitudes et phases photométriques

Convection dépendant du temps

 $M = 1.8 M_0$ - $T_{eff} = 7150 K$ - $\alpha = 1.5$ 4.5 frozen frozen 180 time-dep 1 time-dep 1 4 time-dep 2 time-dep 2 150 3.5 $|\delta T_{eff} / T_{eff}|$ Ψ_{T} lδ T_{eff}∕T_{eff} 120 3 ₹ 2.5 90 2 60 1.5 30 1 0 0.015 0.02 0.025 0.03 0.035 0.015 0.02 0.025 0.03 0.035 Q (d) Q (d)

