Model comparison: CESAM – CLES Effects on oscillation frequencies

Josefina Montalbán¹, Yveline Lebreton², Andrea Miglio¹ & Richard Scuflaire¹

¹Insitut d'Astrophysique et de Géophysique de l'Université de Liège, Belgium

² Observaotire de Paris - Meudon, France

We present the difference in internal structure between CESAM and CLES task1.5 models for three evolutionary stages (Xc=0.60,0.30, and 0.01). We present the results for two evolutionary tracks: without overshooting (left panels), and with overshooting and adiabatic temperature gradient. Even if the HR location of models is very close (see poster I) the differences on the internal structure are clearly reflected on the difference of frequencies for the p- and g- modes. We also show the effect of the thermodynamic inconsistence in the equation of state (see poster I).

OPAL tables. Here we compare the frequencies from models computed using this Standard EoS in CLES, OPAL_Cv and that obtained by deriving Cv, Cp and Γ_3 -1 from Γ_1 , P, χ_p and χ_T (OPAL- Γ_1)

Comparison between CESAM and CLES-OPAL- Γ_1 models reveals a small decrease of the amplitude of oscillation feature presented in Δv .

Models computed using the same physics, but different numerical implementations can provide very close global parameters and internal structures. Nevertheless, the small differences in the structure translate in significant frequency difference.

These differences come both, from the external layers of the star (see Poster I. Note that CESAM and CLES models considered in frequency computation stops at $\tau=2/3$) and from the differences of the details of the boundary of the convective core.