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Abstract. We present in details a time-dependent convection treatment in the frame of the Mixing-Length Theory (MLT).
Following the original ideas by Unno (1967, PASJ, 19, 140), this theory has been developed by Gabriel et al. (1974, Bull. Ac.
Roy. Belgique, Classe des Sciences, 60, 866) and Gabriel (1996, Bull. Astron. Soc. India, 24, 233). In this paper, we present it in
a united form, we detail the basic derivations and approximations and give final improvements. A new perturbation of the energy
closure equation is proposed for the first time, making it possible to avoid the occurrence of short wavelength spatial oscillations
of the thermal eigenfunctions. This theory accounts for the perturbation of the convective flux, the turbulent Reynolds stress
and the turbulent kinetic energy dissipation. It has been numerically implemented in a non-radial non-adiabatic pulsation code
and the first results published in a Letter by Dupret et al. (2004a, A&A, 414, L17) indicate that the theory predicts the observed
red border of the lower end of the instability strip and the driving mechanism of the recently discovered γ Dor stars.
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1. Introduction

Usually stellar oscillations are calculated starting from the as-
sumption that they are perturbations of a static model where
the gas is at rest. However, in convection zones where the gas
is moving up and down, this assumption is no longer valid.
At the beginning of any convection-pulsation interaction study,
it thus seems necessary to make a clear distinction between
the convective motions and the oscillations. This is generally
done by introducing a more or less arbitrary cut-off in the
frequency – wave number space of turbulence. In practice, it
is supposed that the most energetic convective motions have
short wavelengths and interact with the oscillations of longer
wavelength. This distinction allows us to consider, on the one
hand, the convective fluctuations corresponding to the differ-
ence between the physical conditions in a convective cell and
in the average medium, and on the other hand, the perturba-
tion of the mean structure corresponding to the oscillations. In
this perturbative approach, the solution of the general equations
for the unperturbed model is constrained in such a way that it
does not contain the oscillations we want to study. This pro-
vides an unperturbed model. Then we study the stability of this

� In this paper, we give the final derivations of our time-
dependent convection theory. More details about the basic deriva-
tions and the implementation in a non-radial non-adiabatic pulsation
code are only available as appendices in the electronic version at
http://www.edpsciences.org

solution when the constraints are relaxed. More precisely, the
perturbation of the mean structure gives the pulsation equa-
tions, where convection-pulsation coupling terms (perturbation
of the convective flux, turbulent pressure, . . . ) appear. These
coupling terms are obtained by perturbing the equations for the
convective fluctuations and assuming some closure hypotheses.

The problem of the interaction between convection and pul-
sation has been studied by many authors, following different
approaches. In this paper, we consider the case where the con-
strained solution is based on the MLT and the stability of this
solution is studied by a linear perturbative method. Two differ-
ent approaches of the MLT have been proposed, which lead to
the same equations at equilibrium but differ when we consider
their perturbations. On one hand, the theory of Gough (1965,
1977) is based on Taylor’s (1915) and Prandtl’s (1925) original
analogy between turbulence and the kinetic theory of gases. In
this description, the convective elements are accelerated by the
buoyancy force over a characteristic length (the Mixing-Length
(ML)) and then exchange their thermal energy with the aver-
age medium. On the other hand, the theory of Unno (1967) is
based on the original ideas of Prandtl (1932). In this descrip-
tion, a turbulent viscosity is introduced. This turbulent viscos-
ity acts in the opposite direction to the buoyancy force, which
leads in the stationary case to convective cells with constant
velocities. Gabriel et al. (1974, 1975) generalized the theory
of Unno (1967) to the case of non-radial modes. Also, some
terms neglected by Unno are not neglected in the theory of
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Gabriel (1987, 1996, 1998, 2000). In this paper, we present this
theory in a unified form, we detail the basic derivations and ap-
proximations and the last improvements. For the first time, we
implemented this theory in a non-radial non-adiabatic pulsa-
tion code. Preliminary results for the application of our code
to δ Sct and γ Dor stars have been presented in Dupret et al.
(2004a,b) and Grigahcène et al. (2004). In a subsequent paper
in this series (Dupret et al. 2005, hereafter termed Paper II), we
will present a more complete and detailed study of the theo-
retical instability strips for these stars and we will discuss the
sensitivity of our results to the convection models.

We note that other time-dependent convection treatments
have been proposed. Stellingwerf (1982) derived a nonlo-
cal nonlinear time-dependent treatment of convection, which
has been mostly applied to RR Lyrae and Cepheid models.
Eggleton (1983) proposed a generalization of Unno’s prescrip-
tion to include composition changes and possible non-local
terms. Kuhfuss (1986) proposed a method derived from the hy-
drodynamic equations by means of the anelastic approximation
and diffusion approximation. His method allowed him to de-
scribe turbulent convection and derive transport equations for
convective mixing. Xiong et al. (1997) developed a non-local
theory of convection based on the method of moments. Finally,
a completely different approach of the problem of convection-
pulsation interaction is based on 3D hydrodynamic simulations
(Nordlund & Stein 2001). In this approach, it is no longer re-
quired to make an a priori distinction between the convective
motions and the oscillations, both are simultaneously and auto-
matically present in the full solution.

In this paper, we present the perturbation of the convec-
tion and the last improvements of our theory. In the appendices
(only available in the electronic version), the basic derivations
leading to these results are presented. The different steps of
these derivations are the following. In Appendix A, we give
the general hydrodynamic equations. As is generally done in
the study of turbulence, we split each physical variable into
a mean part and a fluctuating part. Taking the average of the
hydrodynamic equations, we obtain the equations for the av-
erage medium, as presented in Appendix B. In these equa-
tions there appear new correlation terms linked to turbulence:
the convective flux Fc in the equation of energy conservation,
the Reynolds stress tensor ρVV in the equation of momentum
conservation, the dissipation rate of kinetic energy of turbu-
lence into heat per gram ε2 and the power produced by the
buoyancy force −V.∇p, in both the equation of energy con-
servation and the equation of turbulent kinetic energy conser-
vation. In order to determine these new terms, we take the
difference between the general equations and the mean equa-
tions, which gives the equations for the convective fluctuations
(Appendix C). Following Unno (1967), these equations are
then simplified in such a way that, in the stationary case, the
usual MLT is recovered. Perturbing the equations for the mean
structure gives the equations of linear non-radial non-adiabatic
pulsation (Appendix D).

Our perturbed convection theory is presented in the main
part of the paper. In Sect. 2, the perturbation of the equations for
the convective fluctuations given in Appendix C is presented.
We search for local solutions in the form of plane waves and

take appropriate averages so that we are able to compute the
perturbation of the convective flux (Sect. 2.1), the perturba-
tion of the turbulent pressure (Sect. 2.2) and the perturbation
of the turbulent kinetic energy dissipation rate (Sect. 2.3). A
well known problem that can arise with the Unno’s prescrip-
tions, is the occurrence of short-wavelength spatial oscillations
of the thermal eigenfunctions (Baker & Gough 1979; Gonczi &
Osaki 1980). We discuss this problem in Sect. 3.1. In Sect. 3.2,
we present an important new aspect of our treatment based on
a reconsideration of the closure equations perturbation, which
enables us for the first time to solve this problem in a local
way. Some results are presented for a solar model and two δ
Sct models, showing that this new treatment succeeds in solv-
ing completely the problem of the short wavelength spatial
oscillations. In Sect. 4 we give the contribution of the differ-
ent terms of our time-dependent convection treatment to the
integral expressions for the eigenvalues. Finally, we explain
in Appendix E how we have implemented the different time-
dependent convection terms of Gabriel’s theory in our non-
radial non-adiabatic pulsation code.

2. Perturbation of the convection

Stationary solutions of the equations for convective fluctua-
tions (Appendix C, Eqs. (C.2), (C.5) and (C.13)) lead to the
classical MLT treatment adopted in our equilibrium models
(Gabriel et al. 1974). In order to determine the perturbation of
the terms linked to convection we proceed as follows. We per-
turb Eqs. (C.2), (C.5) and (C.13). Then we search for solutions
of the form δ (∆X) = δ (∆X)k ei k·r eiσ t, assuming constant co-
efficients. Then we integrate these particular solutions over all
values of kθ and kφ such that k2

θ + k2
φ = A k2

r , assuming A con-
stant (A = 1/2 for an isotropic turbulence) and that every direc-
tion of the horizontal component of k has the same probability.
We have to introduce this distribution of k values to obtain an
expression for the perturbation of the Reynolds tensor which
allows the proper separation of the variables in the equation of
motion (Gabriel 1987).

Finally, horizontal averages are computed on a scale larger
than the size of the eddies but smaller than the horizontal wave-
length of the non-radial oscillations.
After perturbation, Eq. (C.2) becomes, for a given k:

k·δV = 0. (1)

The perturbation of Eq. (C.13) gives:
(
∆ρ

ρ
+
∆T

T

)
dδs
dt
+

d (δ∆s)
dt

+ δV · ∇s + V · δ (∇s)

= −ωR δ∆s − δωR∆s − δ
(
∆s
τc

)
· (2)

We recall that the term ∆s/τc corresponds to the closure ap-
proximation adopted in our MLT treatment for the energy equa-
tion (Eq. (C.9)). When στc � 1, convection instantaneously
adapts to the changes due to oscillations and we can assume:

δ

(
∆s
τc

)
=
∆s
τc

(
δ∆s
∆s
− δτc

τc

)
· (3)
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This is the treatment adopted in Gabriel (1996). In Sect. 3.2,
we will propose another way to perturb ∆s/τc.

In what follows, we use the following notations:

B =
iστc + Λ

Λ
,

C =
ωRτc + 1

iστc + ωRτc + 1
,

D =
1

iστc + ωRτc + 1
·

Isolating (δ∆s)/∆s in Eq. (2), we obtain:

δ∆s
∆s
= D

{
−iστc

Q + 1
Q
δs
cp

+ (ωRτc + 1)

[
δVr

Vr
+

V · ∇ (δs)
Vr (ds/dr)

− V · ∇ξr
Vr

]

+

(
δτc

τc
− ωRτc

δωR

ωR

)}
· (4)

Multiplying by V j/Vr and taking the average gives:

δ∆sV j

∆sVr
= D

VrV j

V2
r

[
−iστc

Q + 1
Q
δs
cp
+
δτc

τc
− ωRτc

δωR

ωR

]

+C


( ∇k (δs)

(ds/dr)
− ∇kξr

)
V jVk

V2
r
+

V jδVr

V2
r

 , (5)

where we use the Einstein convention for repeated indices sum-
mation.

The perturbation of Eq. (C.5) gives:

iσρδV = δ
(
∆ρ

ρ

)
∇p +

∆ρ

ρ
δ (∇p) − δ (∇∆p)

−ρV · δ∇u − ΛρV
τc

(
δρ

ρ
− δτc

τc

)
− ΛρδV
τc
· (6)

Taking the divergence of this equation makes the determination
of δ (∆p) possible. Substituting the values obtained in Eq. (6)
gives, for a given k:

B
δV j

Vr
=

A + 1
A

δ
(
∆ρ
ρ

)
∆ρ
ρ

Kjr

+
A + 1

A


(

dp
dr

)−1

∇iδp − ∇iξr

 Kji

− iστc

Λ

Vi

Vr
∇iξlKl j −

(
δρ

ρ
− δτc

τc

)
V j

Vr
, (7)

where

Kji = δ ji − k jki

k2
and Kjr =

A
A + 1

V j

Vr
·

Perturbing Eq. (C.14) (∆p is neglected), we obtain:

δ

(
∆ρ

ρ

)
=
∆ρ

ρ

(
δ∆s
∆s
− δQ

Q
− δcp

cp

)
· (8)

From Eqs. (4), (7) and (8), we find:

B
δV j

Vr
=

V j

Vr

{
−δQ

Q
− δcp

cp
− δρ
ρ
+
δτc

τc

+D

[
−iστc

Q + 1
Q
δs
cp
+
δτc

τc
− ωRτc

δωR

ωR

+ (ωRτc + 1)

(
δVr

Vr
+

Vk

Vr

( ∇kδs
ds/dr

− ∇kξr

))]}

+
A + 1

A


(

dp
dr

)−1

∇iδp − ∇iξr

 Kji

− iστc

Λ

Vi

Vr
∇iξlKl j. (9)

In the above equations, two terms still have to be determined:
δτc/τc and δωR/ωR. The perturbation of Eqs. (C.6) and (C.12)
gives:

δτc

τc
=
δl
l
− δVr

Vr
, (10)

δωR

ωR

= 3
δT
T
− δcp

cp
− δκ
κ
− 2
δρ

ρ
− 2
δl
l
· (11)

On the basis of Eq. (9) it is possible to determine explicitly the
different perturbed correlation terms. We recall that the average
correlation terms are obtained by integrating the particular so-
lutions over all values of kθ and kφ such that k2

θ + k2
φ = A k2

r , and
then taking horizontal averages. Considering the case j = r,
Eq. (9) gives an explicit form for the radial turbulent velocity
perturbation:

δVr

Vr
=

1
B + (iστc + 1)D

·
{
−δcp

cp
− δQ

Q
− δρ
ρ
+

dδp
dp
− dξr

dr

−iστcD
(Q + 1)

Q
δs
cp
+ C

[
dδs
ds
− dξr

dr

]

− A
A + 1

iστc

Λ

(
dξr
dr
+

1
A
ξr

r
− 
 (
 + 1)

2A
ξh

r

)

−ωRτcD

(
3
δT
T
− δcp

cp
− δκ
κ
− 2
δρ

ρ

)

+ (iστc + 3ωRτc + 2)D
δl
l

}
· (12)

Multiplying Eq. (9) (with j = r) by Vθ and taking the average
gives:

VθδVr

V2
r
=
∂Ym

 /∂θ

B − C

·
{

1
2A

[(
δp

dp/dln r
− ξr

r
+
ξh
r

)

+ C

(
δs

ds/dln r
− ξr

r
+
ξh
r

)]

− 1
2(A + 1)

iστc

Λ

(
dξh
dr
+
ξr
r
− ξh

r

)}
· (13)
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A similar equation is obtained for Vϕ δVr/V2
r . Taking the aver-

age of Eq. (9) with j = θ gives:

δVθ
Vr
=
∂Ym

 /∂θ

2 B

[
C
A

(
δs

ds/dln r
− ξr

r
+
ξh
r

)

+
A + 2

A

(
δp

dp/dln r
− ξr

r
+
ξh

r

)

− iστc/Λ

A + 1

(
ξr
r
− ξh

r
+ (A + 2)

dξh
dr

)]

+
C
B

VθδVr

V2
r
· (14)

More generally, terms of the form VkVl δV j/V3
r can be obtained

by multiplying Eq. (9) by VkVl, integrating over k and taking
the horizontal average. We do not detail the derivations here.
We just notice that, after some algebra, the following useful
result can be obtained:

Vθ δVθ
V2

r
+

Vϕ δVϕ
V2

r
=

1
A
δVr

Vr
· (15)

2.1. The perturbation of the convective flux

We see in Eqs. (D.5) and (D.8) the appearance of the convective
flux perturbation. To obtain it, we perturb Eq. (B.15), which
gives:

δFc = Fc

(
δρ

ρ
+
δT
T

)
+ ρT

(
δ∆sV + ∆sδV

)
. (16)

The radial component of this equation is:

δFc,r

Fc,r
=

(
δρ

ρ
+
δT
T

)
+
δ∆s
∆s
+
δVr

Vr
· (17)

From Eqs. (4), (10) and (11), we obtain an explicit form for the
radial component of the perturbation of the convective flux:

δFc,r

Fc,r
=
δρ

ρ
+
δT
T
− iστcD

(Q + 1)
Q

δs
cp
+ C

[
dδs
ds
− dξr

dr

]

−ωRτcD

(
3
δT
T
− δcp

cp
− δκ
κ
− 2
δρ

ρ

)

+(iστc + 2ωRτc + 1)D
δVr

Vr

+(2ωRτc + 1)D
δl
l
, (18)

where δVr/Vr is given by Eq. (12).
The θ-component of Eq. (16) is:

δFc,θ

Fc,r
=
δ∆s Vθ

∆s Vr

+
δVθ
Vr
· (19)

From Eqs. (5), (13), (14) and using the notation of Eq. (D.7),
we find after some algebra:

δFc,h

Fc,r
=

C (B + 1)
2A (B − C)

δs
ds/dln r

+
1

2AB

[
C (B + 1)

B − C
+ A + 2

]
δp

dp/dln r

+

[
C (B + 1) (2BA + B + 1)

2BA (A + 1) (B −C)
+

B − 1
2B (A + 1)

+
A + 2
2AB

]

·
(
ξh

r
− ξr

r

)

− B − 1
2B (A + 1)

[
C (B + 1)

B −C
+ A + 2

]
dξh
dr
· (20)

2.2. Perturbation of the turbulent pressure

The perturbed turbulent pressure (appearing in Eqs. (D.3),
(D.4), (12), (13), (14)) is directly obtained by perturbing
Eq. (B.7):

δpt

pt
=
δρ

ρ
+ 2
δVr

Vr
, (21)

where δVr
Vr

is given by Eq. (12). Since a term proportional to
dδs/ds is present in Eq. (12) the differential system is one order
larger when the perturbation of the turbulent pressure is taken
into account in the equation of motion (Eq. (D.3)).

2.3. Perturbation of the rate of dissipation of turbulent
kinetic energy into heat

We consider now the perturbation of the last term appearing
in the perturbed equation of energy conservation (Eq. (D.5)):
δ
(
ε2 + V · ∇pth/ρ

)
, where pth = pg+ pR. This term also appears

in the equation of kinetic turbulent energy conservation. We can
thus determine it by perturbing Eq. (B.11). Therefore, we get:

δ
(
ρε2 + V · ∇pth

)
= −iσρ δ

ρV
2

2ρ

 − iσρVV ⊗ ∇ξ. (22)

The evaluation of the first term gives, using Eq. (15):

iσρ δ

ρV
2

2ρ

 = iσpt

δVr

Vr
+
δVθVθ

V2
r
+
δVϕVϕ

V2
r


= iσpt

A + 1
A
δVr

Vr
· (23)

The second term of Eq. (22) gives:

ρVV ⊗ ∇ξ = pt

[
dξr
dr
+

1
2A

(
2
ξr

r
− 
 (
 + 1)

ξh

r

)]
· (24)

And finally we get:

δ
[
ρε2 + V · ∇pth

)
= −iσpt

[
A + 1

2A

(
δpt

pt
− δρ
ρ

)

+
dξr
dr
+

1
2A

(
2
ξr
r
− 
 (
 + 1)

ξh
r

)]
· (25)
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2.4. Perturbation of the ML

A source of uncertainty in any ML perturbative theory of con-
vection comes from the expression which is adopted for the
perturbation of the ML l.

To be coherent with the formula l = αHp chosen to compute
the static model, it seems normal to assume, when στc � 1,
that:

δl
l
=
δHp

Hp
=
δp
p
− dδp

dp
+

dξr
dr
· (26)

This formula has been adopted by Schatzman (1956), Kamijo
(1962), Unno (1967) and Gough (1977).

On the other hand, it can be expected that the perturbation
of the ML becomes negligible when the life-time of the con-
vective elements is much longer than the period of pulsation;
this can be reproduced for example by adopting:

δl
l
=

1

1 + (στc)2

δHp

Hp
· (27)

In our non-adiabatic pulsation code, Eqs. (26) and (27) can be
used optionally. Other ways to perturb the ML have been sug-
gested. Cowling (1935) proposed δl/l = ξr/r. His suggestion
was followed by Boury et al. (1964) and Unno (1967). If it is
assumed that the Lagrangian coordinates of the starting and ar-
rival points of the convective element remain constant, we get
δl/l = dξr/dr. Finally, assuming that the convective element
starts with l = αHp and then ensures ρl3 = constant, Unno
et al. (1989) proposed:

δl
l
=

1
1 + iστc

[
δHp

Hp
− iστc

3
δρ

ρ

]
· (28)

We notice that, leaving aside the hypothesis ρl3 = constant, the
real part of Eq. (28) gives Eq. (27).

3. Closure equations and oscillations
of the eigenfunctions

3.1. Short wavelength oscillations
of the eigenfunctions

A well known problem of this treatment is the occurrence of
spatial oscillations of the thermal eigenfunctions with a wave-
length much shorter than the ML, which is in contradiction with
the basic assumptions of the MLT (Gonczi & Osaki 1980). The
same problem also arises in the local ML perturbative theory
of Gough (Baker & Gough 1979). These oscillations occur in
the part of the convective envelope whereστc � 1 and most of
the energy is transported by convection. The explanation of this
phenomenon is the following. Let us consider the conservation
of energy equation for a radial mode when most of the energy
is transported by convection:

iσT δs = −dδLc

dm
· (29)

Isolating dδs/ds in Eq. (18) and considering the case
στc � 1 � ωRτc, we can write:

δLc

Lc
�

(
δLc

Lc

)
1

+
1

iστc

dδs/dr
ds/dr

· (30)

Combining Eqs. (29), (30) and the equilibrium relations of the
MLT, we find after some algebra:

τc

T

d (δLc)1

dm
+

2iπ
σ

d(ρr2TV2
r )

dm
dδs
dr


−1

2
l2

iστc

d2δs
dr2
+ iστcδs = 0. (31)

This is the equation of an oscillator whose solutions have a
wavelength of:

√
2 l/(στc). In the next section, we propose a

new local treatment avoiding this problem.

3.2. A new perturbation of the closure equations

In the method presented above, we have adopted Eq. (3) for
the perturbation of the energy closure equation. Many com-
plex physical process, including the whole cascade of energy
are extremely simplified in this approach. Therefore, it is clear
that much uncertainty is associated to the perturbation of this
term. A point to emphasize is that the occurrence of the non-
physical spatial oscillations (Sect. 3.1) is directly linked to the
perturbation of this closure term. When these oscillations occur
(στc � 1), the radial derivatives of δs and δ∆s are of the or-
der of (στc/l)δs and (στc/l)δ∆s respectively. Therefore, if we
take Eq. (3), we see that the order of magnitude of the pertur-
bation of the right hand side of Eq. (C.9) is στc times larger
than the left hand side. To have the same order of magnitude,
the perturbation of the left hand side should rather be given by:

δ

(
∆s
τc

)
= βσ δ∆s − ∆s

δτc

τ2
c
, (32)

where β is a coefficient of the order of unity. In order to get
a formula that switch continuously from Eqs. (3) to (32), we
propose to adopt the following expression:

δ

(
∆s
τc

)
=
∆s
τc

(
(1 + βστc)

δ∆s
∆s
− δτc

τc

)
· (33)

With this expression for the perturbation of the closure term,
the coefficient D = (iστc + ωRτc + 1)−1 in Eq. (4) is replaced
by D = ((i + β)στc + ωRτc + 1)−1. Therefore, in the case
στc � 1, the coefficient of d2δs/dr2 in Eq. (31) is approxi-
mately −1/2l2/((i+β)στc) instead of −1/2l2/(iστc) and thanks
to the real part of β, the non-physical spatial oscillations of the
eigenfunctions are no longer present in the solution.

The inclusion of a new free complex parameter β of the
order of unity in the perturbation of the closure term of the
energy equation is not surprising. As said above, many complex
phenomena are neglected in the MLT approach. With this free
parameter β, phase lags between the oscillations and the way
the turbulence cascade adapts to them are allowed to occur,
while they have been neglected in the previous MLT perturbed
models.

We illustrate now that our new perturbation of the energy
closure equation solves completely the problem of the short
wavelength spatial oscillations. In Figs. 1–3, illustration of typ-
ical results obtained for a solar model and two δ Sct models
at the red border and middle of the instability strip are given.
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Fig. 1. �(δL/L) obtained for the 
 = 2 p20 mode (3024 µHz) of a
solar model with our TDC treatment. In the top panel β = 0 and in the
bottom panel β = 1.

Fig. 2.�(δL/L) obtained for the radial p1 mode of a δ Sct model near
the red border of the instability strip (M = 1.8 M	, Teff = 6506.5 K),
as obtained with our TDC treatment. Solid line is for β = 1 and dashed
line is for β = 0.

Fig. 3. �(δL/L) obtained for the radial p1 mode of a δ Sct model in
the middle of the instability strip (M = 1.8 M	, Teff = 7521.4 K), as
obtained with our TDC treatment. Solid line is for β = 1 and dashed
line is for β = 0.

The solar model was computed using the CESAM evolution-
ary code (Morel 1997) and the δ Sct models were computed
using the evolutionary code CLÉS (Code Liégeois d’Évolution
Stellaire). Standard physics is put in these models: the OPAL
opacities (Iglesias & Rogers 1996) complemented at low tem-
peratures by the opacities of Alexander & Ferguson (1994),
the CEFF equation of state (Christensen-Dalsgaard & Däppen
1992), the MLT treatment of convection (Böhm-Vitense 1958)
and the atmosphere models of Kurucz (1998). For the solar
model, calibrated values Y0 = 0.26766 and α = 1.752 were
adopted to fit the solar age, radius and luminosity. The δ Sct
models have M = 1.8 M	, Y0 = 0.28, Z = 0.02, α = 1.8
and αov = 0.2. All the terms of our time-dependent convection
treatment (perturbation of convective flux, turbulent pressure
and dissipation rate of turbulent kinetic energy into heat) were
taken into account in our non-adiabatic computations. In these
figures, we give the real part of δL/L as a function of log T ,
for the mode 
 = 0 p1 (δ Sct models) and the mode 
 = 2 p20

(solar model). The computations of our non-adiabatic code are
performed from the center to the surface of the star, but for the
sake of clarity we only show the results in the relevant region
of the convective envelope in Figs. 1 and 2. As usual, these
eigenfunctions are normalized in such a way that ξr/r = 1 at
the photosphere. Results are given for two values of the param-
eter β: 0 and 1. The short-wavelength spatial oscillations are
particularly striking for the solar model with β = 0 (top panel
of Fig. 1), simply because στc � 1 in the efficient convective
zone of solar-type stars. But our new perturbation of the closure
equation succeeds in avoiding these oscillations completely, as
shown in the bottom panel of Fig. 1 with β = 1. For the δ Sct
model near the red border of the instability strip (Fig. 2), re-
sults with β = 0 (dashed line) show that the oscillations are
also present but to a lesser extent than in the solar case. Again,
these oscillations disappear completely with β = 1 (solid line).
However, for most of the stars in the δ Sct instability strip this
problem does not occur, simply becauseστc < 1 in the convec-
tive envelope of typical δ Sct models. As an example, we give
in Fig. 3 the results obtained for a model in the middle of the
instability strip. This figure illustrates clearly the well known κ-
mechanism with the strong decrease of |δL/L| in the HeII par-
tial ionization zone. We see that, in this case, the results are
very similar for β = 1 (solid line) and β = 0 (dashed line). This
result is important for the validation of our treatment, showing
that when the short wavelength oscillations are not present, the
results obtained with our new and old treatments of the closure
equation perturbation are very close.

In the second paper of the series (Paper II), we will show
that the excitation and damping mechanisms are not very sensi-
tive to this new parameter β for δ Sct and γ Dor stars. For solar-
type stars, the confrontation with the observed damping rates of
stochastically excited p-modes makes possible to constrain the
value of this parameter, as will be discussed in a forthcoming
paper.

The solution we have proposed to the problem of the short-
wavelength oscillations is local. We note that non-local solu-
tions have also been proposed (Gonczi 1986; Balmforth 1992;
Xiong et al. 1997). Non-adiabatic results depend on the spe-
cific treatment. More precisely, differences between local and
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non-local results can occur, but also differences between a
given non-local treatment and another non-local treatment, or
even between one local treatment and another local treatment.
These differences cannot be estimated in a simple way and
strongly depend on the type of star considered. The main differ-
ences are expected to occur for the thermal eigenfunctions (en-
tropy and flux variations). We showed in Dupret et al. (2004a,
Fig. 1) that the locations of the δ Sct theoretical instability strip
red edges obtained with our local treatment and with the non-
local treatment of Balmforth (1992) and Xiong et al. (1997) are
close, although the theories are very different.

4. Integral expressions

It is useful to examine the role played by the different terms
of our time-dependent convection treatment in the integral ex-
pressions for the frequencies. Multiplying Eq. (D.3) by ξ∗r (“∗”
denoting the complex conjugate), using Eq. (D.4) and integrat-
ing over the mass of the star, we obtain after some algebra:

σ2
∫ M

0

(
|ξr |2 + 
(
 + 1)|ξh|2

)
dm

=

∫ M

0


δρ∗

ρ

δp
ρ
+ 2�

[
ξr
∗ δρ
ρ
g

]

+
ρ′∗

ρ
Φ′ − |ξr |2gd ln ρ

d r

+
2A − 1

A
pt

ρ

[
ξ∗r
r

dξr
dr
+ 
(
 + 1)

ξ∗h
r

(
ξr
r
− ξh

r

)]

+ (1/ρ)
(
ξ∗rΞr + 
(
 + 1)ξ∗hΞh

) dm . (34)

The imaginary part of this equation gives:

2 σRσI

∫ M

0

(
|ξr |2 + 
(
 + 1)|ξh|2

)
dm

=

∫ M

0
dm �


δρ∗

ρ

δp
ρ
+ (1/ρ)

(
ξ∗rΞr + 
(
 + 1)ξ∗hΞh

)

+
2A − 1

A
pt

ρ

[
ξ∗r
r

dξr
dr
+ 
(
 + 1)

ξ∗h
r

(
ξr
r
− ξh

r

)]  , (35)

where σR is the real part of the eigenvalue (angular fre-
quency) and σI is the imaginary part (damping rate). The term

− ∫ M

0
�{δρ∗δp/ρ2}dm of this equation is the work done by the

system during one cycle of pulsation. We consider this term
with more attention. We recall that δp is the perturbation of to-
tal pressure (including turbulent pressure). To simplify the dis-
cussion, we consider the case of a radial mode. From Eq. (D.5),
we find:

�
{
δρ∗

ρ

δp
ρ

}
= �

{
δρ∗

ρ

δpt

ρ

}
+ (Γ3 − 1)

· �

δρ∗

ρσ

dδL
dm
− δε − δ

ε2 + V·∇pth

ρ



 · (36)

From Eq. (25) and assuming isotropic turbulence (A = 1/2),
we find:

�

δρ∗

ρσ
δ

ε2 + V·∇pth

ρ


 =

3
2
�

{
δρ∗

ρ

δpt

ρ

}
· (37)

And finally, Eq. (36) gives:

�
{
δρ∗

ρ

δp
ρ

}
=

(
1 − 3

2
(Γ3 − 1)

)
�

{
δρ∗

ρ

δpt

ρ

}

+ (Γ3 − 1)�
{
δρ∗

ρσ

[
d δ (LR + Lc)

dm
− δε

]}
· (38)

In agreement with Ledoux & Walraven (1958), we see from
this equation that the perturbation of turbulent pressure (in the
movement equation) and the perturbation of dissipation rate
of turbulent kinetic energy (in the energy equation) have op-
posite effects on the work integral and thus on the excitation
and damping of the modes. In particular, if the gas is com-
pletely ionized and radiative pressure is negligible, we have
Γ3 − 1 � 2/3 and the two terms compensate exactly. Therefore
when the perturbation of the turbulent pressure is taken into ac-
count, the other terms should also be included and may not be
neglected a priori, as their relative importance varies with the
behavior of Γ3 and the assumed shape of the convective eddies
linked to the choice of A. As is well known, the regions where
dδL/dm < 0 at the hot phase have a driving effect on the os-
cillations. Many authors neglect the perturbation of convective
luminosity in the estimation of this term (frozen convection).
However, it is important to take it into account for an accurate
analysis of the driving and damping mechanisms in convective
zones. We notice also the ambiguity of the frozen convection
approximation. It is not clear what would have to be set to zero,
the Lagrangian or Eulerian variations of the convective flux, the
convective luminosity or the divergence of the convective flux
(Pesnell 1990; Li 2000).

5. Conclusion

In this paper, a time-dependent convection treatment is pre-
sented, based on the prescriptions of Unno (1967) and the im-
provements by Gabriel (1974, 1996). A new perturbation of the
closure equation that makes possible to avoid the occurrence of
unphysical oscillations of the eigenfunctions is proposed, and
applications to solar and δ Sct models show that this new treat-
ment works properly. We have numerically implemented in a
non-radial non-adiabatic pulsation code the perturbation of the
convective flux, turbulent pressure and rate of dissipation of
turbulent kinetic energy into heat, according to this theory. The
detailed numerical results obtained for δ Sct and γ Dor stars
will be presented in a separate paper. Although the perturba-
tion of the full Reynolds stress tensor has not yet been included
in our non-adiabatic code, our preliminary results (Dupret et al.
2004a) show that the theory accounts for two important obser-
vational constraints: the red edge of the instability strip and
a mechanism for driving the g-mode pulsation present in the
γ Dor stars.
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Appendix A: Hydrodynamic equations

The hydrodynamic equations of mass, momentum, energy con-
servation and the Poisson equation are respectively:

∂ρ

∂t
+ ∇ · (ρu) = 0, (A.1)

∂ (ρu)
∂t
+ ∇ · (ρuu) = −ρ∇Φ − ∇ ·

(
Pg + PR

)
, (A.2)

∂(ρU)
∂t
+ ∇ · (ρUu) +

(
Pg + PR

)
⊗ ∇u = ρε − ∇ · FR, (A.3)

∇2Φ = 4 πG ρ, (A.4)

where ρ is the density, u is the velocity vector, Φ is the gravita-
tional potential, G is the gravity constant, Pg = pg1 − βg and
PR = pR1 − βR are the gaseous and radiative stress tensors (1 is
the identity tensor), pg and pR are the gas and radiative pres-
sures, U is the internal energy, ε is the rate of energy generation
by nuclear reactions and FR is the radiative flux.

Appendix B: Mean equations

In this section, we follow the same procedure as in Ledoux &
Walraven (1958). We split the variables in two parts, describing
respectively the average model and the convection. Therefore,
we write:

y = y + ∆y, (B.1)

u = u + V, (B.2)

where y is any of the variables ρ, p, T , etc. y and u are the
average values, while ∆y and V describe the convection. By
convention we put:

d
dt
=
∂

∂t
+ u · ∇. (B.3)

We take horizontal averages of Eqs. (A.1) and (A.2) to get the
equations of mass and momentum conservation for the average
model. Taking into account that∆y = 0 and ρV = 0 , we obtain:

∂ρ

∂t
+ ∇ · (ρu) = 0, (B.4)

∂ (ρu)
∂t
+ ∇ · (ρuu) + ∇ ·

(
ρVV

)
= −ρ∇Φ − ∇ ·

(
Pg + PR

)
. (B.5)

We notice the presence of a new tensor ρVV, which is the
Reynolds stress tensor. We introduce the turbulent viscous ten-
sor by:

ρVV = pt 1 − βt, (B.6)

where we choose to define the turbulent pressure by the follow-
ing equation:

pt = ρV2
r . (B.7)

At equilibrium, this tensor is diagonal and we define A as:

A =
1
2
ρV2

r

ρV2
θ

=
1
2
ρV2

r

ρV2
ϕ

· (B.8)

In the isotropic case, A = 1
2 .

Neglecting βg and βR, we finally obtain:

ρ
du
dt
= −ρ∇Φ − ∇(pg + pR + pt) + ∇ · βt. (B.9)

Multiplying Eq. (A.2) by u, Eq. (B.5) by u, taking the difference
and then the average, we obtain after some algebra the equation
of turbulent kinetic energy conservation:

ρ
d
dt

1
2
ρV2

ρ

 = −(βg + βR

)
⊗ ∇V

− V · ∇
(
pg + pR

)
− ρVV ⊗ ∇u

− 1
2
∇ ·

(
ρV2V

)

+ ∇ ·
((
βg + βR

)
· V

)
. (B.10)

The last term of this equation is small (Ledoux & Walraven
1958) and the flux of kinetic energy of turbulence given by the
term 1

2∇ ·
(
ρV2V

)
is negligible in the MLT, therefore they are

both neglected. We then obtain:

ρ

2
d
dt

ρV
2

ρ

 = −ρε2 − V · ∇
(
pg + pR

)
− ρVV ⊗ ∇u (B.11)

where ρε2 =
(
βg + βR

)
⊗ ∇V is the rate of dissipation of turbu-

lent kinetic energy into heat per unit volume.
The mean equation of energy conservation is obtained by

taking the average of Eq. (A.3):

ρ
dU
dt
+

(
pg + pR

)
∇ · u = −∇ ·

(
FR + Fc

)
+ ρε

+ρε2 + V · ∇
(
pg + pR

)
. (B.12)

Fc is the total flux of energy transported by convection:

Fc =
(
pg + pR + ρU

)
V = ρ∆HV, (B.13)

where H is the enthalpy. Using the entropy s instead of the in-
ternal energy, the mean equation of energy conservation finally
takes the following form:

ρT
ds
dt
= −∇ ·

(
FR + Fc

)
+ ρε + ρε2 + V · ∇(pg + pR), (B.14)

and neglecting the pressure fluctuations and third order terms,
we can write:

Fc = ρT ∆sV. (B.15)

We notice that the term ρε2 + V · ∇(pg + pR) is present in both
Eqs. (B.11) and (B.14) and Eq. (B.11) shows that it is every-
where equal to zero in the equilibrium model. For conciseness,
we will call the sum of these two terms the rate of dissipation
of turbulent kinetic energy into heat.
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Appendix C: Equations for the convective
fluctuations

Subtraction of Eqs. (B.4), (B.5) and (B.12) from Eqs. (A.1),
(A.2) and (A.3), gives the equations for convection. These
are then simplified in such a way that their solution for non-
pulsating stars gives the MLT (Böhm-Vitense 1958). This pro-
cedure guarantees the compatibility between the theory used to
compute our static models and the theory used to evaluate their
pulsational stability. As long as static models are computed us-
ing MLT, we will also have to use it in stability analysis in order
to preserve this consistency.

C.1. Continuity equation

The difference between Eqs. (A.1) and (B.4) gives:

ρ
d
dt

(
∆ρ

ρ

)
+ ∇ · (ρV) = 0. (C.1)

In our treatment we use the Boussinesq approximation. In this
approximation, the pressure fluctuations are neglected every-
where except in the equation of motion (Eq. (C.5)) and the
density fluctuations are neglected in the continuity equation,
which gives:

∇ · V = 0 or ∇ · (ρV) = 0. (C.2)

C.2. Equation of motion

Taking the difference between Eqs. (A.2) and (B.5) and using
Eq. (B.4), we find the equation of motion for the convection:

ρ
d
dt

(
ρV
ρ

)
= −ρV · ∇u +

ρ

ρ
∇ ·

(
Pg + PR + ρVV

)

−∇ ·
(
Pg + PR + ρVV

)

= −ρV · ∇u+
∆ρ

ρ
∇

(
pg + pR + pt

)

−∇∆
(
pg + pR + pt

)

−∆ρ
ρ
∇ · (βg + βR + βt)

+∇ · (∆βg + ∆βR + ∆βt). (C.3)

We now have to linearize and simplify some terms of this equa-
tion to close the problem. This assumption is necessary to re-
cover the MLT but neglects a large number of characteristics
of the convection, including the cascade of the energy bound
to the coupling of the convective motions at different scales.
Following Unno (1967), we assume:

∆ρ

ρ
∇ · (βg + βR + βt) − ∇ · (∆βg + ∆βR + ∆βt) = Λ

ρV
τc
· (C.4)

Finally, neglecting ∆ρ in d
dt

(
ρV
ρ

)
, we obtain:

ρ
dV
dt
=
∆ρ

ρ
∇p − ∇∆p − ρV · ∇u − ΛρV

τc
, (C.5)

where p = pg + pR + pt. Λ is a dimensionless constant. In our
case we take Λ = 8/3 to have compatibility with our equilib-
rium MLT models. τc is the lifetime of the convective elements.

It is related to the ML l = −α(dln p/dr)−1 and the radial com-
ponent of mean turbulent velocity by:

τc = l/
√

V2
r . (C.6)

C.3. Energy equation

Taking the difference between Eqs. (A.3) and (B.12), we obtain
the energy equation for the turbulence:

ρ
d
dt

(
ρU
ρ
− U

)
+ ∇ ·

(
ρHV−ρHV

)

− V · ∇
(
pg + pR

)
+ V · ∇

(
pg + pR

)
+

(
∆pg + ∆pR

)
∇ · u − ρε2 + ρε2

= ρε − ρε − ∇ · ∆FR. (C.7)

We keep only the first order terms in the fluctuations and we
work in the Boussinesq approximation. We obtain then for the
energy equation:

∆ (ρT )
ds
dt
+ ρT

d∆s
dt
+ (ρT∇s) · V−ρT∇s · V − ρε2 + ρε2

= ρε − ρε − ∇ · ∆FR. (C.8)

For similar reasons as for the derivation of Eq. (C.4), we as-
sume (Unno 1967):

ρT
∆s
τc
= −ρTV·∇s − ρε2 + ρε2
+ (ρT∇s) · V−(ρT∇s) · V. (C.9)

The energy equation becomes:

∆ (ρT )

ρT

ds
dt
+

d∆s
dt
+V · ∇s =

(ρε − ρε − ∇ · ∆FR)

ρT
−∆s
τc
· (C.10)

Since we consider convective envelopes only, we can set ε = 0.
Following the MLT approach, we linearize ∇ · ∆FR as:

∇ · ∆FR = −ωR∆sρT , (C.11)

with

ωR =
1
τR

=
4ac
3

T
3

cpκρ
2L2
· (C.12)

τR is the characteristic cooling time of turbulent eddies due to
radiative losses.L is the characteristic length of the eddies. It is
related to the ML l byL2 = (2/9)l2 to recover the MLT used in
our equilibrium stellar models. We finally obtain for the energy
equation:

∆ (ρT )

ρT

ds
dt
+

d∆s
dt
+ V · ∇s = −ωRτc + 1

τc
∆s. (C.13)

Finally, the equation of state gives (since we neglect ∆p):

∆ρ

ρ
=

1
Q
∆s
cp
, (C.14)

∆T

T
=
∆s
cp
, (C.15)

where Q = ∂ ln T
∂ ln ρ

∣∣∣∣
p
.
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Appendix D: Perturbation of the mean structure

In this section, we perturb the equations of the mean struc-
ture, which gives the linear non-radial non-adiabatic pulsation
equations. As in Eqs. (B.5) and (B.14), coupling terms between
convection and pulsation will appear here (perturbation of the
convective flux, . . . ). They will be evaluated in Sect. 2. The
Lagrangian variation of any quantity y is denoted, for a given
spheroidal mode by:

δy (r, t) = δy (r) exp (iσt) Ym

 (θ, ϕ) ,

where σ is the angular frequency and Ym

 the spherical har-

monic. In order to be able to distinguish global perturba-
tions from convective motion, we must consider 
 values small
enough so that r/
 � l. In what follows, we omit the overlining
of the mean quantities when no risk of confusion is present.
The perturbed equation of mass conservation is:

δρ

ρ
+

1
r2

∂

∂r

(
r2 ξr

)
= 
 (
 + 1)

ξh
r
, (D.1)

where we used the notation of Unno et al. (1989) for the dis-
placement vector ξ.
The motion equation is obtained by perturbing Eq. (B.9):

−σ2ρ ξ = −δρ∇Φ − ∇
(
δpg + δpR + δpt

)
+∇ξ · ∇ · βt − ρ∇δΦ + δ (∇ · βt) . (D.2)

From the definition of A given in Eq. (B.8), we find at equilib-
rium:

∇ · βt = −2A − 1
A

pt

r
er.

For the perturbation of the divergence of the Reynolds tensor,
we use the following notation:

δ (∇ · βt) = −Ξr (r) Ym

 (θ, ϕ) er

−Ξh (r)
(
r∇hYm

l (θ, φ)
)
,

where ∇h is the transverse component of the gradient. The ra-
dial component of the equation of motion then takes the fol-
lowing form:

σ2ξr =
dδΦ
dr
+

1
ρ

d
dr

(
δpg + δpR + δpt

)

+ g
δρ

ρ
+

2A − 1
A

pt

rρ
dξr
dr
+
Ξr

ρ
, (D.3)

where g = dΦ/dr is the gravitational acceleration. The trans-
verse component of the equation of motion is:

σ2r ξh = δΦ +
rΞh

ρ
+
δpg + δpR + δpt

ρ

+
2A − 1

A
pt

ρ

(
ξr
r
− ξh

r

)
· (D.4)

From the perturbation of the energy equation (Eq. (B.14)), we
find:

iσTδs = − d δ (LR + Lc)
dm

+

(
δε

ε
+ 
 (
 + 1)

ξh
r

)
ε

+

 (
 + 1)
4πr3ρ

(
LR

(
δT

r (dT/dr)
− ξr

r

)
− Lc
ξh
r

)

+

 (
 + 1)
ρr

δFc,h + δ

ε2 + V·
∇

(
pg + pR

)
ρ

 . (D.5)

In the diffusion approximation, δLR is given by:

δLR

LR

= 2
ξr
r
+ 3
δT
T
− δκ
κ
− δρ
ρ
+

dδT/dr
dT/dr

− dξr
dr
· (D.6)

In a stellar atmosphere, the diffusion approximation is not valid
and we use the treatment proposed in Dupret et al. (2002a) in-
stead of Eqs. (D.5) and (D.6). However, the Eddington approxi-
mation or a more general expression for the radiative stress ten-
sor, as used in Gabriel (1996) can also be used. Then Eq. (D.5)
must also be slightly modified. For the perturbation of the con-
vective flux we use the following notations:

δFc = δFc,r (r) Ym

 (θ, φ) er

+ δFc,h (r)
(
r∇hYm


 (θ, φ)
)
, (D.7)

and

δLc

Lc
= 2
ξr
r
+
δFc,r

Fc,r
· (D.8)

Appendix E: Implementation in a non-radial
non-adiabatic pulsation code

We have implemented the different coupling terms between
convection and pulsation in the non-radial non-adiabatic code
MAD. This code has already been used for the study of β Cep,
SPB, δ Sct and γ Dor stars and includes a detailed treatment
of the pulsation in the stellar atmosphere (Dupret et al. 2002b,
2002a). Moya et al. (2004) applied the same treatment to the
case of δ Sct stars. The convection-pulsation coupling terms
included in the code are the perturbation of the radial and trans-
verse component of the convective flux, the perturbation of the
turbulent pressure and finally, the perturbation of the dissipa-
tion rate of turbulent kinetic energy into heat. We first recall
the numerical structure of the code, and then we detail the im-
plementation of each term.

E.1. Numerical structure of our non-adiabatic code

In our non-adiabatic code, a finite difference method, together
with an inverse iteration algorithm is adopted in order to con-
verge on the solution. For all the variables, we use Lagrangian
perturbations, except the perturbation of the gravitational po-
tential which is Eulerian. The independent variables of our
code are: δL/L, ξr/r, δs/cv, δρ/ρ and Φ′. For the discretisation
of the equations, we have adopted an interlaced mesh similar
to the one proposed initially by Castor (1971), which appears
to be very stable from a numerical point of view. The perturbed
variables δL/L and ξr/r are defined on one grid (labelled by 1)
while the other variables δs/cv, δρ/ρ and Φ′ are defined on the
other grid (labelled by 2). The two interlaced grids are such
that:
0 < . . . < r1,i−1 < r2,i−1 < r1,i < r2,i < r1,i+1 < . . . < R.

E.2. Discretisation of the convective flux perturbation

A discrete transfer equation relating in a linear way (δL/L)1,i

to (δs/cv)2,i−1, (δs/cv)2,i, (δρ/ρ)2,i−1, (δρ/ρ)2,i, (ξr/r)1,i and
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(ξr/r)1,i+1 is required in our code. Decomposing the perturba-
tion of total luminosity into the convective and radiative con-
tributions, we thus need similar relations for δFc,r/Fc,r and
δFR,r/FR,r. We detail the case of the perturbed convective flux.
This term is given by Eqs. (18) and (12). The perturbed equa-
tion of state makes possible to relate δT/T , δcp/cp, δκ/κ and
δQ/Q to the two independent perturbed variables of our code
δs/cv and δρ/ρ. The discretisation of the continuity equa-
tion (Eq. (D.1)) makes possible to relate (ξh/r)2,i to (δρ/ρ)2,i,
(ξr/r)1,i and (ξr/r)1,i+1. δl/l is obtained using Eqs. (26) or (27)
optionally. The derivatives of δs and ξr are simply estimated
by the finite differences between two consecutive points of the
grid.

The perturbation of the transverse component of the con-
vective flux is given by Eq. (20). In this equation, the term
(dξh/dr)2,i is estimated by taking the finite difference between
the continuity equation at two consecutive points, which relate
it to (δρ/ρ)2,i, (δρ/ρ)2,i+1, (ξr/r)1,i, (ξr/r)1,i+1 and (ξr/r)1,i+2.
The discrete equation for (δFc,h/Fc,r)2,i is then substituted in
the energy equation (Eq. (D.5)).

E.3. Discretisation of the turbulent pressure
and kinetic energy dissipation perturbation

The perturbation of the total pressure appears in Eqs. (D.3),
(D.4), (12), (20) and (26). As δp = δpg + δpR + δpt, the eval-
uation of δpt is thus required when turbulent pressure is taken
into account. Eq. (21) relates it to the perturbed convective ve-
locity, which in turn is given by Eq. (12). However, as dδp/dp
appears in Eq. (12), we see that the determination of δpt is im-
plicit. A first solution is to add explicitly in the pulsation code
a new variable (δpt)2,i and a new difference equation at each
layer. Another solution, rigorous for radial modes only, is to
obtain an explicit equation for δpt by substituting in Eq. (12)
and (26) the value of dδp/dp given by the equation of motion.
We notice that the first solution is more flexible and can be
more stable from a numerical point of view.

The discretisation of the turbulent kinetic energy dissipa-
tion perturbation is directly deduced from Eq. (25). Then, this
equation is substituted in the discrete equation of total energy
conservation.


