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Abstract. New theoretical instability strips forδ Sct andγ Dor stars are presented. These results have been obtained taking
into account the perturbation of the convective flux following the treatment of Gabriel (1996). For the first time, the red edge
of theδ Sct instability strip for non-radial modes is obtained. The influence of this time-dependent convection (TDC) on the
driving of theγ Dor gravity modes is investigated. The results obtained for different values of the mixing-length parameterα
are compared for theγ Dor models. A good agreement with observations is found for models withα between 1.8 and 2.0.
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1. Introduction

The determination of theoretical instability strips is of great in-
terest in the study of variable stars, because their confrontation
to observations enables to test our knowledge of stellar interiors
and our understanding of the driving mechanisms of pulsating
stars. We consider in this paper the case ofδSct andγDor stars.

The theoretical blue edge of theδ Sct instability strip has
been determined by many authors, for radial as well as for non-
radial modes (e.g. Pamyatnykh 2000). But the determination of
the theoretical red edge is a more difficult matter, because it
requires a non-adiabatic treatment of the interaction between
convection and pulsation. Xiong et al. (2001) and Xu et al.
(2002) succeeded to obtain a theoretical red edge for radial
modes, using the non-local time-dependent convection theory
of Xiong et al. (1998), and Houdek (2000) studied the con-
vective effects on radialp-mode stability inδ Sct stars, using
the time-dependent convection treatment of Gough (1977). In
this paper, we present the first theoretical blue and red edges of
theδ Sct instability strip obtained for non-radial modes as well,
following the time-dependent convection treatment developed
by Gabriel (1996).
γ Dor stars are a recently discovered class of variable

stars. These stars are located in a region of the HR diagram
that is bounded by∼7200−7550 K on the zero-age main se-
quence (ZAMS) and by∼6900−7400 K near the end of the
main sequence phases (Handler & Shobbrook 2002a). Using
frozen convection (FC) models, Guzik et al. (2000) showed
that the driving of theγ Dor gravity modes can be explained
by a convective flux blocking mechanism at the base of their
convective envelope. A first theoretical instability strip has
been obtained by Warner et al. (2003), following this ap-
proach. However, in a significant part of the convective enve-
lope, the FC approximation is not valid, because the life-time

of the convective elements becomes shorter than the pulsation
period. In this paper, we show that the driving of theγ Dor
g-modes is successfully explained by our TDC models.

A brief explanation of our TDC treatment is given in
Sect. 2. The theoretical instability strips obtained forδ Sct
and γ Dor stars are then presented in Sects. 3 and 4
respectively.

2. Time-dependent convection (TDC) treatment

In this paper, we follow the TDC treatment of Gabriel (1974,
1996, 1998, 2000). We split the variables in two parts, de-
scribing respectively the average model and the convection.
Therefore we write:y = y + ∆y, u = u + V, wherey is any
scalar variable andu is the velocity vector.y andu are the av-
erage values, while∆y andV describe the convection.

The mean equations of mass, momentum and energy con-
servations are respectively:

∂ρ

∂t
+ ∇ · (ρu) = 0 , (1)

∂ (ρu)
∂t
+ ∇ · (ρuu) + ∇ ·

(
ρVV

)
= −ρ∇Φ − ∇ · P , (2)

ρT
ds
dt
= −∇ · FR − ∇ · FC + ρε + ρε2 + V.∇p , (3)

whereΦ is the gravitational potential,P is the gas+ radiation
stress tensor,ρVV is the Reynolds stress tensor,s is the entropy,
FR and FC are the radiative and convective flux vectors,ε is
the energy generation rate by nuclear reactions,ε2 is the rate
of dissipation of turbulent kinetic energy into heat andV.∇p is
the work of the pressure gradient.

Subtracting Eqs. (1)–(3) from the corresponding non-
averaged ones gives the equations for convection. They are
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then simplified in such a way that their stationary solutions lead
to the classical mixing length theory of B¨ohm-Vitense (1958).
This procedure ensures the compatibility between the theories
used to compute our equilibrium models and to evaluate their
vibrational stability. The continuity, motion and energy equa-
tions for convection take then the following form:

∇ · V = 0, (4)

ρ
dV
dt
+ ρV · ∇u =

∆ρ

ρ
∇p− ∇∆p− 8ρV

3τC
, (5)

d∆s
dt
+
∆ (ρT)

ρT

ds
dt
= −V · ∇s− Γ

−1 + 1
τC

∆s, (6)

whereΓ = τR/τC is the convective efficiency,τC is the life-time
of the convective elements andτR is the cooling characteristic
time of turbulent eddies due to radiative losses.

The perturbation of Eqs. (1)–(3) gives the linear pulsation
equations, where new terms appear such as the perturbation of
the convective flux and the Reynolds stress tensor. Of these
terms, only the perturbation of the convective flux vector is
taken into account in this paper and it is given by:

δFC = FC

(
δρ

ρ
+
δT

T

)
+ ρT

(
δ∆sV + ∆sδV

)
. (7)

The unknown correlation terms in Eq. (7) can be obtained
from the fluctuation equations. More precisely, we perturb
Eqs. (4)–(6) and we search for solutions of the formδ (∆X) =
δ (∆X)k ei k·r eiσ t. Then we integrate these particular solutions
over all values ofkθ andkφ such thatk2

θ+k2
φ = A k2

r assumingA
as a constant (A = 1/2 for an isotropic turbulence). Then the
horizontal averages are computed. Finally, the perturbed con-
vective flux takes the following form:

δFC = δFCr (r) Ym
l (θ, φ) er + δFCh (r)

(
r∇hYm

l (θ, φ)
)

(8)

and the problem is naturally separated in spherical harmon-
ics. δFCr (r) and δFCh (r) are related to the perturbed mean
quantities by first order differential equations. Proceeding so,
the timescales of pulsation and convection coming respectively
from the perturbation of the left hand side and right hand side
of Eqs. (5) and (6) are both taken into account (for more details,
we refer to the role played by the coefficientsB andD defined
at p. 239 of Gabriel 1996). Therefore, our treatment does not
assume instantaneous adaptation of convection to pulsation nor
frozen convection.

The main source of uncertainty in any MLT treatment of
convection-pulsation interaction comes from the expression
which is adopted for the perturbation of the mixing-length
l = αHp. In this paper, we adopt the following formula:

δl
l
=

1

1+ (στC)2

δHp

Hp
, (9)

with the two limit casesδl/l → δHp/Hp whenστC � 1 and
δl/l → 0 whenστC � 1, whereHp is the pressure scale height.

Our equilibrium models are computed using a local mixing-
length approach. For reasons of consistency between the equi-
librium and perturbed models, our TDC treatment is also local.

3. δ Sct instability strip

We have implemented the perturbation of the convective flux
in the linear non-adiabatic code MAD (Dupret et al. 2002).
In order to determine the theoretical instability strips, a large
number of evolutionary tracks were computed by the code
CLÉS (Liège), with masses going from 1.4 to 2.2M�, with
different values of the MLT parameterα, with core overshoot-
ing αov = 0.2 and with solar metallicity. Then, we studied
the stability of the modes in the appropriate frequency range.
Contrary to the calculations with FC, with our TDC treatment
we are able to reproduce the red edge of theδ Sct instability
strip, for radial as well as for non-radial modes.

In Fig. 1, we present the theoretical instability strip ob-
tained for radial modes, for models with the solar calibrated
valueα = 1.8. Each curve corresponds to the blue or red edge
of a mode of given radial ordern. Labels enable to identify the
modes (e.g.p4R for the red edge of thep4 mode). As the ra-
dial order of the modes increases, the blue and red edges are
displaced towards higherTeff. For the sake of clarity of the fig-
ure, we only give the results for modes fromp1 to p4. However
we stress that, on the blue side of the instability strip, we find
unstable modes up top7. The small points correspond to the
position of observedδ Sct stars, as taken from the catalogue
of Rodriguez et al. (2000), using the calibrations of Moon &
Dworetsky (1985). We have only presented the results obtained
for α = 1.8. We note that the theoretical red edges are dis-
placed towards lower effective temperatures whenα decreases.
The physical reason is that the red edge corresponds to models
with a given size of the convective envelope; this size increases
whenα increases orTeff decreases. As comparison, we also
give in Fig. 1 the position of the red edge for the fundamental
radial mode as obtained by Xiong et al. (2001) (“�”) and by
Houdek (2000) (“•”).

In Fig. 2, we present the theoretical instability strip ob-
tained for` = 2 modes, for models withα = 1.8. Again we
see that, as the radial order of the modes increases, the blue
and red edges are displaced towards higherTeff. For the sake of
clarity of the figure, we only give the results for modes fromg3

to p4. For non-radial modes, the shapes of the blue and red
edges are not as straight as for radial modes, because of the
avoided crossings.

In Fig. 3, we compare the work integral of the fundamental
radial mode obtained with TDC and FC, for a model situated
just at the red edge of theδ Sct instability strip. Regions where
the work increases (resp. decreases) are driving (resp. damp-
ing) the oscillations. The surface value of the work integral is
the dimensionless growth rate (−=(σ) τdyn). The vertical line
indicates the base of the convective envelope. With a local TDC
treatment, spatial oscillations are present at the base of the con-
vective envelope, as first explained by Baker & Gough (1979).
With a non-local treatment (Xiong et al. 2001) or with other
specific treatments that we will present in a forthcoming paper,
these spatial oscillations can be avoided and the stabilization of
theδ Scuti p-modes still occurs at the same location in the HR
diagram. Driving due to convective blocking andκ-mechanism
occurs in the FC model but no longer plays a significant role in
the TDC model.
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Fig. 1.Blue and red edges of theδ Sct theoretical instability strip. The
lines are our TDC results for radial modes fromp1 to p4, for models
with α = 1.8. The small points correspond to observations. As com-
parison, we give also the red edges for the fundamental radial mode
obtained by Xiong et al. (2001) (“�”) and by Houdek (2000) (“•”).

Fig. 2. Blue and red edges of theδ Sct theoretical instability strip for
models withα = 1.8 and` = 2 modes fromg3 to p4, as obtained with
our TDC treatment.

4. γ Dor instability strip

The driving of high order gravity modes inγ Dor stars can also
be explained by our TDC models. In Fig. 4, we show the peri-
ods of all the unstablè= 1 gravity modes obtained for models
of 1.6 M� with α = 2, as a function of the effective tempera-
ture. Each cross corresponds to an unstable mode. As can be
seen, the periods of those modes correspond to the typical ob-
served periods ofγ Dor stars. Moreover, we see at the bottom
of this figure that our models have also unstablep-modes. The
existence of stars pulsating with bothδ Sct p-modes andγ Dor
high orderg-modes would thus be explained by our theoreti-
cal models. We refer to Handler & Shobbrook (2002a) for an
observational research (however not yet conclusive) of such

Fig. 3. Comparison between the work integral of the fundamental ra-
dial mode obtained with a TDC model (top panel) and a FC model
(bottom panel). The vertical line indicates the base of the convec-
tive envelope. The characteristics of the equilibrium models are:M =
1.6 M�, Teff = 6664.8 K, log(L/L�) = 0.9731 andα = 1.8.

Fig. 4. Periods (in days) of all the unstable` = 1 gravity modes ob-
tained for models of 1.6M� with α = 2, as a function of the effective
temperature. Each cross corresponds to a giveng-mode.

hybrid δ Sct - γ Dor stars. In Fig. 5, we show the theoreti-
cal instability strips ofγ Dor ` = 1 modes obtained with our
TDC treatment (thick lines), for three families of models with
different values of the MLT parameterα: 1, 1.5 and 2. As com-
parison, we give in the same figure the FC results of Warner
et al. (2003) obtained withα = 1.87 (thin dashed lines). In this
case, we give global instability strips and not individual ones
for each mode. For any model inside the instability strip, at
least one unstable high orderg-mode is found; outside it all are
stable. The small circles correspond to the observed positions
of bona fideγ Dor stars from the catalogue of Handler (2002b);
their effective temperatures are taken from Kaye et al. (1999)
who used the calibrations of Villa (1998). Some evolutionary
tracks for models withα = 1.5 are also given in this figure.
As for δ Sct stars, we see that the theoretical predictions are
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Fig. 5. γ Dor theoretical instability strips for̀ = 1 modes, for three
families of models with different values ofα: 1, 1.5 and 2 obtained
with our TDC treatment (thick lines), compared to the FC results of
Warner et al. (2003) (thin dashed lines,α = 1.87). The small circles
correspond to observations of bona fideγ Dor stars.

Fig. 6. Comparison between the work integral of the` = 1, g47 mode
obtained with a TDC model (solid line) and a FC model (dashed line).
The vertical line indicates the base of the convective envelope. The
characteristics of the equilibrium model are:M = 1.6 M�, Teff =

6934.8 K, log(L/L�) = 0.9564 andα = 2.

very sensitive toα. The depth of the convective envelope plays
the major role in the driving ofγ Dor g-modes. This explains
the high sensitivity of our results toα. In Fig. 6, we compare
the work integral of thè = 1, g47 mode obtained with TDC
and FC, for a model situated in the middle of theγ Dor insta-
bility strip. In both TDC and FC models, the main driving oc-
curs at the base of the convective envelope (in agreement with
Guzik et al. 2000). Smallκ-driving in the H ionization zone
occurs in the FC model but no longer in the TDC model.

5. Conclusion

Including the perturbation of the convective flux, following
the Gabriel’s treatment, we obtained theoretical instability
strips forδ Sct andγ Dor stars. Forδ Sct stars, we succeed to
reproduce both the blue and red edges, for radial as well as
for non-radial modes. With the solar calibrated valueα = 1.8, a

good agreement with observations is found. We obtained also
theoretical instability strips for theγ Dor g-modes. The the-
oretical instability strips ofγ Dor stars are very sensitive to
the value of the MLT parameterα. We get a good agreement
with observations for models withα = 2. We note that the
calibration used to go from observational to theoretical HR di-
agrams is subject to uncertainties, however these are expected
to be small compared to the effect of changingα in our mod-
els. In this paper, we only emphasized the main results. More
details about the theory and the physical interpretation of the
results will be presented in a forthcoming paper (Grigahc`ene
et al. in preparation). Houdek (2000) pointed out that the per-
turbation of the turbulent pressure (not yet included in our
study) can also play a significant role in the stabilization of
the δ Sct p-modes. Our future prospect is to include the per-
turbation of the full Reynolds stress tensor (Gabriel 1987) and
the dissipation of turbulent kinetic energy in our non-adiabatic
code and study their influence on the driving ofδ Sct andγ Dor
radial and non-radial modes.

Acknowledgements.M.A.D. acknowledges support through a
European Community Marie Curie Fellowship. AG and RG acknowl-
edge financial support from the program ESP 2001-4528-PE. We
thank Franc¸ois Carlier for giving us his notes about TDC.

References

Baker, N. H., & Gough, D. O. 1979, ApJ, 234, 232
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