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Abstract. We present ground-based high-resolution high S/N spectra of the slowly pulsating B star HD 147394. Two frequen-
cies are clearly found in the moments of the Si II 4128-4130 doublet: f1 = 0.8008 c d−1 and f2 = 0.7813 c d−1. The frequency f1
is also found in the HIPPARCOS data. A third frequency is also present in our spectroscopic data: f3 = 0.7175 c d−1 or its
aliases due to the time sampling. A mode identification is performed by means of a new version of the moment method opti-
mized for multiperiodic signals. It points towards several equivalent solutions of non-axisymmetric � ≤ 3 for all three modes.
We have too limited information to perform seismic modelling at this stage, but we do show that the different possibilities for
the mode identifications are compatible with pulsational models for SPBs.
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1. Introduction

The slowly pulsating B stars (SPBs) were introduced as a new
class of pulsating B-type stars by Waelkens (1991). They are
situated along the main-sequence with spectral types ranging
from B2 to B9 and masses ranging from 3 M� to 7 M�. They
show light and line-profile variations, that are multiperiodic
with periods of the order of days. This variability is understood
in terms of non-radial stellar pulsations and their oscillation
modes are high-order g-modes. Theoretical models attribute
the pulsational nature of SPBs to the κ-mechanism, acting in
the metal opacity bump at 2 × 105 K.

The main future goal of the study of SPBs is to perform
asteroseismology, i.e. to probe their internal structure by us-
ing their observed pulsational characteristics. To do this, many
pulsation frequencies and modes must be detected, which is an
observational challenge because of the long pulsation periods
of SPBs.

From the HIPPARCOS mission, a huge number of B-type
stars have been classified as new SPBs by Waelkens et al.
(1998). These new SPBs almost fully cover the theoretical
instability domain calculated for such stars by Pamyatnykh
(1999). A sample of about 20 stars among these SPBs has
been selected for long-term photometric and spectroscopic
monitoring with the aim of providing an inventory of the
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observational characteristics of the pulsations (Aerts et al.
1999; De Cat et al. 2000; De Cat 2001; Mathias et al. 2001;
De Cat & Aerts 2002). We refer to De Cat (2002) for an obser-
vational overview.

This paper is devoted to the analysis of one of these stars:
HD 147394. It is the SPB for which most high-resolution spec-
tra are available thus far. We performed a frequency analy-
sis on these data, followed by a mode identification from the
line-profile variations. The plan of the paper is the follow-
ing. In Sect. 2 we give a description of our data and we de-
rive some physical parameters of HD 147394. The results of
the frequency analysis from derived quantities based upon the
spectroscopic observations are described in Sect. 3. In Sect. 4
we identify the modes of HD 147394 by means of a new ver-
sion of the moment method (Briquet & Aerts 2003). As this is
one of the first spectroscopic mode identifications ever done for
an SPB, we compare our identification results with theoretical
pulsation models as a compatibility check in Sect. 5. Finally,
we give a summary in Sect. 6.

2. The spectroscopic data and the physical
parameters of HD 147394

We selected HD 147394 among the many SPBs discov-
ered from the HIPPARCOS mission (Waelkens et al. 1998)
so that we have at our disposal HIPPARCOS photom-
etry, which clearly reveals the frequency 0.80027 c d −1

(Mathias et al. 2001). We note that this dataset shows evidence
of multiperiodicity but a value for a second frequency is not
clear.
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Fig. 1. Line-profile variations of the Si II 4128-4130 doublet.
Observation dates are indicated on the right of the panel
(+2450850 HJD).

Table 1. Observing logbook of our spectroscopy of HD 147394.

Number of JD
observations 2450850 +

Start End

47 1 6
14 113 117
14 155 162
13 186 192
117 431 437
45 457 461

Line-profile variations have already been reported by
Masuda & Hirata (2000), who gathered 30 spectra in 5 nights.
We have a much more extensive dataset which consists in 250
useful spectra obtained with the spectrograph Aurélie at OHP
during 6 separate weeks of monitoring spread over 460 days.
The number of observations and the ranges of their Julian
Dates are given in Table 1. The spectral domain is limited
and was chosen in order to get the SiII-doublet with lines
at λλ 4128, 4130 Å. The signal-to-noise ratio is about 200. For
a complete description of the observations and data reductions
we refer to Mathias et al. (2001). Figure 1 represents several of
the observed line-profile variations.

We also have a few Geneva data points at our disposal of
the star from which we derive the stellar parameters, as the
spectra have only very small spectral coverage. The effective
temperature and the gravity of HD 147394 are obtained by
means of the photometric calibration by Künzli et al. (1997)
to the mean magnitudes in the Geneva filters. The distance,
derived from the parallax measured by HIPPARCOS, and the
average visual magnitude, give the absolute visual magnitude.
Taking into account the bolometric correction (BC), which is

Fig. 2. Position of HD 147394 in the HR diagram. The theoretical SPB
instability strip is calculated by Pamyatnykh (1999). The star is situ-
ated on the evolutionary track published by Schaller et al. (1992) cor-
responding to some 5 M�.

calculated by means of Flower’s relation (1996) between T eff

and BC, one obtains the bolometric magnitude and the
luminosity. With the values for the effective temperature
and the luminosity one estimates the mass, e.g. by using the
evolutionary tracks published by Schaller et al. (1992). We
also calculated the radius. The results are the following:





log Teff = 4.17 ± 0.01,
log g = 4.00 ± 0.15,
log L/L� = 2.80 ± 0.15,
M = 5.0 ± 0.5 M�,
R = 3.7 ± 0.8 R�.

Because we have only a few Geneva data, we checked our re-
sult with those available in the literature and derived from spec-
troscopic data. In Smith (1997), we found log T eff = 4.18 and
log g = 3.93, which is in agreement with our estimates based on
the Geneva photometry. Smith & Dworetsky (1993) have found
the star to have solar iron abundance (log N(Fe) = 7.65±0.15).

The position of this B5 IV star in the theoretical HR dia-
gram falls in the centre of the SPB instability strip (see Fig. 2).

3. Frequency analysis

We extracted the measurements of the doublet Si II centered at
λλ 4128, 4130 Å. From these spectral lines we computed the
first three velocity moments < v >, < v2 > and < v3 > (see
Aerts et al. 1992 for a definition of the moments of a line pro-
file) with the aim of performing a frequency analysis. We used
the PDM method (Stellingwerf 1978), Scargle method (Scargle
1981) and the CLEAN method (Roberts et al. 1987). We tested
frequencies from 0 to 3 cycles per day (c d−1) with a frequency
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Fig. 3. From top to bottom: Scargle periodograms of the radial velocity
derived from the Si II 4130 line, of this data prewhitened with f1, of
this data prewhitened with f1 and f2, of this data prewhitened with f1,
f2 and f3. The 4 S/N level is situated at 0.74 km s−1 in the third panel.
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Fig. 4. Upper panel: phase diagram of the radial velocity computed
from the Si II 4130 line for f1 = 0.8008 c d−1. Lower panel: phase
diagram of the data prewhitened with f1 for f2 = 0.7813 c d−1.

step of 0.0001 c d−1. The error estimate of our determined fre-
quencies is between 0.0001 c d−1 and 0.001 c d−1. We obtained
the same results with the three methods and for both Si lines.

In < v >, < v2 > and < v3 >, we found the frequency
f1 = 0.8008 c d−1, which corresponds to the frequency found in
the HIPPARCOS data. After prewhitening of the data with this
dominant frequency, we obtained a second frequency clearly
present in < v > and < v3 >, which is f2 = 0.7813 c d−1.
These two frequencies reduce the standard deviation of the first
moment by 50%. Note that a fit for 1+ f2 is slightly less good. f1

and 1 + f2 reduce the standard deviation by 48%. A fit with f1

and 1 + f2 leads to a smaller amplitude for the second mode
compared to a fit with f1 and f2: 1.70 km s−1 for 1 + f2 instead
of 2.05 km s−1 for f2. We then kept f2 for the second frequency.
Scargle periodograms are shown in Fig. 3 and phase diagrams
of the first moment for the Si II 4130 line are shown in Fig. 4.

After prewhitening of the data with f1 and f2, the residu-
als show evidence of a third frequency. Two frequencies are
apparent: f3 = 0.7175 c d−1 or f ′3 = 0.6710 c d−1. The first
one ( f3) occurs after prewhitening with f1 and f2 (see third
panel of Fig. 3) while the second one ( f ′3) is the highest peak
if we prewhiten with slightly different values for f1 and f2

(e.g. 0.8006 c d−1 and 0.7814 c d−1) within the error estimate.
Together with f1 and f2, they reduce respectively 61% and 59%
of the standard deviation in the first moment. Phase diagrams
of the radial velocity, prewhitened with f1 and f2, for f3 =

0.7175 c d−1 and for f ′3 = 0.6710 c d−1 are shown in Fig. 5.
We note that f3 reduces the standard deviation slightly better
than f ′3 . The difference between both candidate frequencies is
0.0465 c d−1, which corresponds to about three weeks. We also
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Table 2. Highest peaks in the window function (expressed in c d−1).

p1 1.0001 p9 0.0024
p2 1.0026 p10 1.0070
p3 0.0068 p11 0.0397
p4 0.9957 p12 0.9629
p5 0.0440 p13 0.9561
p6 0.0372 p14 0.0465
p7 1.0398 p15 2.0027
p8 0.0044

Table 3. Amplitudes and phases of the least-squares sine fits to the
observed first moment computed from the Si II 4130 line, together
with their standard errors for f1, f2 and f3, for f1, f2 and f ′3 .

Amplitude (km s−1) Phase (degrees)

f1 3.28 ± 0.11 109 ± 2
f2 2.05 ± 0.11 136 ± 2
f3 1.37 ± 0.11 60 ± 5

f1 3.07 ± 0.12 108 ± 2
f2 1.84 ± 0.12 135 ± 3
f ′3 1.07 ± 0.11 152 ± 6

notice that the time span between two missions of observations
is about three weeks or about a multiple of three weeks except
between the second and third missions. This indicates that the
frequencies may be aliases. We computed the window function
for frequencies between 0.0001 c d−1 and 10 c d−1 with a step
of 0.0001 c d−1. The 15 highest peaks of this function are listed
in Table 2. The 14th peak is exactly 0.0465 c d−1. One also
remarks that only four frequencies of the list are independent.
We conclude that f3 and f ′3 are aliases due to the time sampling.
We also note that additional aliases of f3 and f ′3 cannot be ex-
cluded (see third panel of Fig. 3). In the following, we continue
to work with f3 and f ′3 , just to see if our results for the two main
modes f1 and f2 are influenced by using different values for the
frequency of the third mode.

In order to determine the significance of both aliases, we
considered the 4 S/N criterion introduced by Breger et al.
(1993). The noise is defined as the average value of the
amplitude of the peaks in the surroundings of the suspected
frequencies (in the interval [0,2] c d−1 for this case) in an over-
sampled periodogram after prewhitening of the candidate fre-
quencies. Frequencies for which the peak amplitude is higher
than 4 times the noise level are retained. In Fig. 3 we show the
Scargle periodogram. As the 4 S/N level is 0.74 km s−1, both
aliases must be retained based on this criterion.

The amplitudes and phases of the least-squares sine fits to
the observed first moment for the combinations f 1, f2, f3 and f1,
f2, f ′3 are listed in Table 3.

4. Mode identification with the moment method

Among techniques of mode identification from line-profile
variations, only the line-profile fitting method and the moment
method derive the full pulsational information. Because, even
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Fig. 5. Upper panel: phase diagram of the radial velocity computed
from the Si II 4130 line, prewhitened with f1 and f2, for f3 =

0.7175 c d−1. Lower panel: phase diagram of the data prewhitened
with f1 and f2, for f ′3 = 0.6710 c d−1.

with current computers, a simultaneous identification of multi-
ple modes is not possible by direct line-profile fitting, the mo-
ment method turns out to be very useful. With this method, the
wavenumbers (�,m) and the other continuous velocity param-
eters are determined in such a way that the theoretically com-
puted first three moment variations best fit the observed ones.
We refer to Briquet & Aerts (2003) for the latest version of the
technique, which was improved by these latter authors in order
to perform a simultaneous identification of all the modes that
are present in the data. We also point out that the method is
no longer restricted to slow rotators but is extended to rotating
pulsating stars by Briquet & Aerts (2003) by using the theory
derived by Lee & Saio (1987). The use of this latter formalism
instead of the non-rotating one can be relevant for SPBs since
their observed ratios of the rotational frequency to the pulsa-
tional frequency are in general larger than 0.1 (De Cat 2001).

Because of the alias problem for the third mode, we identi-
fied modes simultaneously for both the combination f 1, f2 and
f3 and the combination f1, f2 and f ′3 in order to check the con-
sistency of the results. Moreover, for both cases, we performed
one identification by using the non-rotating formalism and one
identification by using Lee & Saio’s formalism.

To compute the theoretical moments, we took a linear limb-
darkening coefficient u of 0.36 (see e.g. Wade & Rucinski
1985). To identify the modes, we covered the parameter space
by varying the free parameters in the following way: the
projected rotational velocity vΩ from 1 to 35 km s−1 with a
step 1 km s−1, the inclination of the star i from 5◦ to 90◦ with
a step 5◦, the line-profile width from 1 to 20 km s−1 with a
step 1 km s−1. We used the K-value given by K = GM/ω2R3,
where M is the mass, R the radius and ω the angular pulsation
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Table 4. The ten best solutions of the mode identification by means of the non-rotating formalism through the discriminant Σ, using the
Si II 4130 Å line. Ap is the amplitude of the radial part of the pulsation velocity, expressed in km s−1; vr,max and vt,max are respectively the
maximum radial and tangential surface velocity due to the three modes, expressed in km s−1; i is the inclination angle; vΩ is the projected
rotational velocity, expressed in km s−1 and σ is the intrinsic line-profile width, also expressed in km s−1. The second-but-last column contains
the solution that occurs at position 20. The upper and lower part of the table correspond respectively to an identification for f1, f2, f3 and for f1,
f2, f ′3 .

(�1,m1) (1,1) (3,−2) (1,1) (3,−2) (1,1) (3,−2) (1,1) (1,1) (2,−2) (2,−2) . . . (3,−2) . . .

(�2,m2) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (2,−1) (2,−1) (2,−1) (2,−1) . . . (3,−1) . . .

(�3,m3) (1,1) (3,−2) (2,−2) (1,1) (2,−1) (2,−2) (3,−1) (1,1) (1,1) (3,−1) . . . (5,4) . . .

A1
p 1.94 1.29 1.94 1.29 1.94 1.29 1.60 1.60 0.91 0.91 . . . 1.29 . . .

A2
p 1.78 1.78 1.78 1.78 1.78 1.78 3.12 3.12 3.12 3.12 . . . 1.78 . . .

A3
p 0.66 0.43 0.46 0.66 0.32 0.46 0.55 0.54 0.54 0.55 . . . 2.22 . . .

vr,max 1.29 0.61 1.17 0.67 1.21 0.63 0.73 0.72 0.28 0.26 . . . 0.61 . . .

vt,max 7.28 17.37 8.84 13.83 4.75 14.6 28.7 29.1 29.5 29.1 . . . 51.40 . . .

i 55 55 55 55 55 55 85 85 85 85 . . . 55 . . .

vΩ 23 12 25 11 19 11 35 35 35 35 . . . 12 . . .

σ 17 19 16 19 18 19 11 11 11 11 . . . 7 . . .

Σ 5.95 5.97 5.97 5.99 6.03 6.04 6.04 6.04 6.07 6.07 . . . 6.14 . . .

(�1,m1) (1,1) (1,1) (1,1) (2,−2) (2,−2) (2,−2) (3,−3) (1,1) (1,1) (2,−2) . . . (2,−2) . . .

(�2,m2) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (2,−1) (3,−1) . . . (3,−1) . . .

(�′3,m′3) (2,−2) (2,−1) (1,1) (2,−2) (1,1) (2,−1) (5,−3) (1,0) (5,3) (5,−3) . . . (2,0) . . .

A1
p 1.82 1.59 1.59 0.96 0.96 0.96 1.20 1.82 1.50 0.86 . . . 0.96 . . .

A2
p 1.59 2.16 2.16 2.16 2.16 2.16 1.00 1.59 2.80 0.88 . . . 2.16 . . .

A
′3
p 0.31 0.32 0.40 0.23 0.40 0.32 2.39 0.46 1.80 1.80 . . . 0.39 . . .

vr,max 0.99 1.22 1.35 0.29 0.52 0.39 0.78 1.12 0.27 0.65 . . . 0.50 . . .

vt,max 5.44 4.23 4.55 4.53 4.48 3.58 29.0 3.62 33.1 26.4 . . . 4.50 . . .

i 55 70 70 70 70 70 80 55 85 85 . . . 70 . . .

vΩ 20 27 27 27 31 27 9 20 29 20 . . . 27 . . .

σ 18 15 15 15 13 15 3 18 3 12 . . . 15 . . .

Σ 6.08 6.09 6.10 6.10 6.12 6.12 6.13 6.13 6.14 6.14 . . . 6.17 . . .

frequency. For each tested (�,m, i), the velocity amplitude A p

was chosen so that the theoretical amplitudes of the first mo-
ment are equal to the observed ones (see Table 3).

The results of the mode identification by means of the non-
rotating formalism using f1, f2 and f3 and using f1, f2 and f ′3
are given in respectively the upper and lower part of Table 4.
We used K1 = 11, K2 = 12, K3 = 14 and K ′3 = 16. We first
of all find that the discriminating function Σ has lower val-
ues for the combination f1, f2, f3, giving slight preference for
that combination. A clear conclusion is that none of the three
modes is axisymmetric. One can conclude that the choice of
the frequency for the third mode does not influence the iden-
fication of the second mode, for which we systematically find
(�2,m2) = (3,−1) or (2,−1). The most likely identification for
f1 is (�1,m1) = (1, 1), although (3,−2) and (2,−2) also oc-
cur among the best possibilities. The second solution may then
point towards components of a multiplet, as f1, f2 are close fre-
quencies. One also remarks that, even if it is difficult to de-
termine the third mode, both identifications do not differ very
much.

We then performed a mode identification by means of Lee
& Saio’s formalism. The K-values were computed using the

corotating angular frequency related to the observed one by
ωc = ωobs + mΩ, where Ω is the angular frequency of rota-
tion. We checked each time if the K-values remain sufficiently
low in order to obtain physically relevant velocity values, i.e.
we eliminate too large K-values. For computation time reasons,
we tested vΩ from 5 to 35 km s−1 with a step 5 km s−1. The re-
sults using f1, f2 and f3 and using f1, f2 and f ′3 are given in
respectively the upper and lower part of Table 5. The identifi-
cations for the first and second modes are confirmed and do not
change compared to those derived with the neglect of the effect
of rotation.

We find systematically a projected rotational velocity above
9 km s−1. Assuming that the rotation frequency equals f1 −
f2 = 0.0195 c d−1 leads to an equatorial rotation velocity of
only 3.7 km s−1. This excludes the possibility that f1 and f2 cor-
respond to subsequent components of one multiplet.

Given that we cannot discriminate well between f3, f ′3 and
other aliases due to bad time sampling, and that a biperiodic
solution explains only about 50% of the standard deviation
present in the first moment, we do not attempt line-profile fit-
ting with the best candidate modes found in Table 4 for f 1

and f2. Indeed, we cannot hope to discriminate between such
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Table 5. The ten best solutions of the mode identification by means of Lee & Saio’s formalism through the discriminant Σ, using the Si II 4130 Å
line. The meanings of the symbols are the same as in Table 4. The second-but-last column contains the solution that occurs at position 20. The
upper and lower part correspond respectively to an identification for f1, f2, f3 and for f1, f2, f ′3 .

(�1,m1) (1,1) (3,−2) (1,1) (1,1) (3,−2) (2,−2) (2,−2) (2,−2) (3,−2) (3,−2) . . . (2,−1) . . .

(�2,m2) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) . . . (3,−1) . . .

(�3,m3) (2,−2) (1,1) (1,1) (2,−1) (2,−2) (1,1) (2,−2) (2,−1) (3,−3) (2,−1) . . . (2,−2) . . .

A1
p 2.20 0.93 2.20 2.20 0.93 0.44 0.44 0.44 0.76 0.93 . . . 0.42 . . .

A2
p 1.11 1.47 1.11 1.11 1.47 0.74 0.74 0.74 1.29 1.47 . . . 0.36 . . .

A3
p 0.21 0.72 0.76 0.22 0.33 0.80 0.12 0.17 0.28 0.27 . . . 0.07 . . .

vr,max 1.09 0.58 1.22 1.10 0.51 0.23 0.14 0.11 0.45 0.50 . . . 0.14 . . .

vt,max 9.22 14.86 6.42 4.93 15.91 12.68 16.88 11.53 21.48 16.43 . . . 12.36 . . .

K1 8.47 16.33 8.47 8.47 16.33 43.54 43.54 43.54 20.04 16.33 . . . 23.60 . . .

K2 17.32 14.32 17.32 17.32 14.32 21.37 21.37 21.37 15.71 14.32 . . . 25.34 . . .

K3 35.16 11.99 10.22 21.29 21.30 8.81 68.44 26.90 40.78 17.26 . . . 137.01 . . .

i 55 55 55 55 55 55 55 55 55 55 . . . 50 . . .

vΩ 20 10 20 20 10 30 30 30 15 10 . . . 35 . . .

σ 18 19 18 18 19 14 14 14 18 19 . . . 12 . . .

Σ 6.08 6.09 6.10 6.13 6.14 6.14 6.14 6.15 6.16 6.17 . . . 6.21 . . .

(�1,m1) (1,1) (1,1) (1,1) (2,−2) (2,−2) (2,−2) (1,1) (3,−3) (3,−1) (3,−3) . . . (3,−3) . . .

(�2,m2) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−2) (2,−2) (3,−2) . . . (3,−2) . . .

(�′3,m′3) (2,−1) (2,−2) (2,1) (1,0) (2,−1) (2,−2) (1,0) (2,−2) (2,−2) (3,−3) . . . (3,−1) . . .

A1
p 2.06 2.06 2.06 0.66 0.66 0.66 2.06 0.77 0.79 0.77 . . . 0.77 . . .

A2
p 0.99 0.99 0.99 0.99 0.99 0.99 0.99 2.35 1.15 2.35 . . . 2.35 . . .

A
′3
p 0.14 0.13 0.28 0.46 0.14 0.13 0.46 0.16 0.45 0.17 . . . 0.32 . . .

vr,max 1.02 0.96 1.01 0.13 0.14 0.10 1.01 0.30 0.42 0.31 . . . 0.17 . . .

vt,max 3.07 5.70 5.66 8.18 8.09 12.35 3.34 40.11 29.30 40.31 . . . 39.32 . . .

K1 8.47 8.47 8.47 25.15 25.15 25.15 8.47 17.93 15.24 17.93 . . . 17.93 . . .

K2 17.32 17.32 17.32 17.32 17.32 17.32 17.32 16.16 22.77 16.16 . . . 16.16 . . .

K′3 25.11 43.57 11.44 16.31 25.11 43.57 16.31 23.10 35.08 28.21 . . . 19.26 . . .

i 55 55 55 55 55 55 55 85 30 85 . . . 85 . . .

vΩ 20 20 20 20 20 20 20 10 10 10 . . . 10 . . .

σ 18 18 18 18 18 18 18 17 20 17 . . . 17 . . .

Σ 6.25 6.26 6.27 6.27 6.27 6.27 6.28 6.29 6.29 6.29 . . . 6.32 . . .

fits in a meaningful way, as there is clearly still variability due
to at least one, and probably even more, low-amplitude modes.
Such modes are sort of filtered out in the moment variations
but not in the line profiles themselves. For this reason, we have
determined theoretical values for < v >, < v2 > and < v3 > for
the best solutions listed in the upper panel of Table 4. For four
of these solutions, we compare the moment values with the ob-
served ones in Fig. 6. The four solutions are indicated in italic
in Table 4. We point out that all first 15 best solutions result in
very similar moment values and that we are unable to discrimi-
nate between the different possibilities for the mode identifica-
tion. The only result that we can conclude upon with certainty
is that we are dealing with non-axisymmetric � ≤ 3 modes.
Additional data with full coverage of the overall beat-period is
needed to obtain unique mode identifications. A visual check
shows that the (�,m) combinations from position 16 onwards
explain less well the observed moment variations. For compar-
ison, we also list in Table 4, and show in Fig. 6, the solution

that occurs on position 20. One can see from the dashed line in
the lowest and rightmost panel of Fig. 6 that this solution leads
to a too large amplitude for f3 in the third moment. Moreover,
its maximal tangential velocity is quite high. We conclude that
we cannot discriminate between some 15–20 solutions from
the discriminant. It will become possible to obtain unambigu-
ous mode identifications for this star if we are able to detect a
limited number of additional modes, by combining the results
of the discriminant and of seismic models (see further below).

For all solutions i ∈ [50◦, 85◦], vΩ ∈ [10,35] km s−1. For
the radius 3.7 R�, this leads to a rotation period between 4.3
and 18.7 days.

5. Comparison with theoretical pulsation models

The mode identification for f1 and f2 is the first one derived
from a spectroscopic time series for this SPB. Moreover, we
find evidence for an � = 3 mode, which is seldom observed
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Fig. 6. Comparisons between the observed first three moments (dots) to four of the best solutions (full lines) given in italic in Table 4. The
dashed line represents the solution that occurs at position 20 in Table 4. Left: from top to bottom: phase diagram for f1 of < v > prewhitened
with f2 and f3, phase diagram for f2 of < v > prewhitened with f1 and f3, phase diagram for f3 of < v > prewhitened with f1 and f2. Middle:
from top to bottom: phase diagram for f1 of < v2 > prewhitened with all frequencies except f1 and 2 f1, phase diagram for f2 of < v2 >
prewhitened with all frequencies except f2 and 2 f2, phase diagram for f3 of < v2 > prewhitened with all frequencies except f3 and 2 f3. Right:
from top to bottom: phase diagram for f1 of < v3 > prewhitened with all frequencies except f1, 2 f1 and 3 f1, phase diagram for f2 of < v3 >
prewhitened with all frequencies except f2, 2 f2 and 3 f2, phase diagram for f3 of < v3 > prewhitened with all frequencies except f3, 2 f3

and 3 f3. Note that the errors on < v >, < v2 > and < v3 > are respectively given by 0.45 km s−1, 20 (km s−1)2 and 1000 (km s−1)3.

in pulsating stars. In order to check if such a solution is com-
patible with theoretical model predictions, we have determined
evolutionary model sequences from the main sequence that
pass the position of HD 147394 in the HR diagram (see Fig. 7)
with the Code Liégeois d’Évolution Stellaire written by one
of us (RS), assuming no convective overshooting. For each
model with 4.15 ≤ log T eff ≤ 4.19 we have subsequently cal-
culated the oscillation frequencies using a standard adiabatic
code (Boury et al. 1975). For each evolutionary sequence, we
have selected the models which give an exact fit for f1 and f2

according to the identification (�1,m1) = (1, 1) and (�2,m2) =
(3,−1), taking into account the Ledoux rotational splitting con-
stant and by varying the equatorial rotation velocity in the
range [10,50] km s−1 with a step of 0.1 km s−1. Figure 8 rep-
resents theoretical frequencies compared to observed ones for
one of the many models that we found compatible with the

observations. For this example, f1 corresponds to the g12 mode
and f2 to the g40 mode. We note that, even with a constraint
coming from mode identification, the sets of theoretical fre-
quencies are quite dense, which makes it difficult to find one
unique solution, especially as the rotation frequency is also a
free parameter to a certain extend.

We have limited ourselves to the combination (�1,m1) =
(1, 1) and (�2,m2) = (3,−1) for our compatibility check with
the models. We stress, however, that other mode identifications
would also lead to agreement with models of slightly different
stellar parameters.

6. Summary

Our study of the slowly pulsating B star HD 147394 was based
on 250 high-resolution high signal-to-noise spectra spread
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Fig. 7. Evolutionary tracks of a 5 M� star without overshooting, with
X = 0.70 and for different values of the metallicity Z, computed with
CLES. The box delimits the position of HD 147394 in the HR di-
agram derived from photometry. Dots represent models that fit f1
and f2 according to the mode identification (�1,m1) = (1, 1) and
(�2,m2) = (3,−1).

−0.20 −0.15 −0.10 −0.05 0.00

 

log f (c/d)

l=1

l=3

l=1

l=3

l=1

l=3

l=1

l=3

l=1

l=3

Fig. 8. Theoretical frequencies for one of the models that fit observed
frequencies (dashed lines). The � = 2 modes are not shown, but have
a density in between the � = 1 and � = 3 modes.

over 460 days. The moment variations of the Si II 4128-4130
doublet clearly reveal multiperiodicity with frequencies f 1 =

0.8008 c d−1, f2 = 0.7813 c d−1 and f3 = 0.7175 c d−1 or its
aliases due to the time sampling. We performed a mode identifi-
cation by means of a new version of the moment method which
identifies multiple modes simultaneously, leading to only one
derived estimate for vΩ, i and σ for each of the (�,m) combi-
nations. We did it by using the non-rotating formalism as well
as the one derived by Lee & Saio (1987) for low-frequency g-
mode pulsators. Both identifications lead to almost the same list
of best candidate solutions whatever is the chosen value for the
third frequency. The identification for the modes is not unique
but we conclude that they are non-axisymmetric with � ≤ 3.
The rotation period of the star must be between 4 and 19 days.

It turns out that less than 20 combinations of (�,m)
are found to be equivalent by the discriminant for this
SPB. It therefore should be possible to derive correct mode

identifications from the discriminant and seismic modelling
should we detect a small additional number of modes in the
star.

Despite the fact that HD 147394 is currently the SPB for
which we have the most high-quality spectra available, its fre-
quency spectrum revealed only three modes so far due to severe
alias problems in the dataset. In view of the dense frequency
spectra of potential modes (see Fig. 8), it is at present not the
best target for a seismic analysis. Indeed, in De Cat & Aerts
(2002) we find several SPBs with a larger number of detected
modes, mainly in those objects for which very long-term mul-
ticolour photometry is available. It is our intention to apply the
moment method by Briquet & Aerts (2003) and the photomet-
ric amplitudes method by Dupret et al. (2003) to all the targets
in the list of De Cat & Aerts (2002). With state-of-the-art mode
identifications at hand, we subsequently plan to compute nu-
merous theoretical models to derive the stellar parameters of
the SPBs with unprecedented precision and, if possible, to de-
rive information on the (internal) rotational behaviour of these
massive gravity-mode oscillators, according to the strategy out-
lined in Aerts et al. (2003).
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