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Abstract. In this study, we compute theoretical line profiles of a non-radially pulsating star, taking the non-
adiabatic effects into account. These non-adiabatic effects are especially important in the atmosphere, where the
spectral lines are formed, and must be accounted for. In this first paper of the series, we present a new treatment
of the perturbed thermal and dynamical equations in the atmosphere of a pulsating star. We apply our formalism
to the computation of non-adiabatic eigenfunctions in a typical β Cephei star with low order p-modes and in a
typical slowly pulsating B star with high-order g-modes.
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1. Introduction

Pulsating stars offer us a unique opportunity to probe
their internal structure and, in turn, refine our knowledge
of stellar evolution and test the physics used in the models.
Although precise periods can now currently be detected in
multi-periodic non-radial pulsators, the identification of
the observed modes remains a problem, while it is critical
in providing key ingredients for asteroseismic inferences.
Different methods of mode identification in pulsating stars
have been developed, based on multi-colour photometry
(see e.g. Watson 1988; Cugier et al. 1994; Heynderickx
et al. 1994; Garrido 2000), or on spectroscopic observa-
tions of line-profile variations (Buta & Smith 1979; Aerts
1996; Telting & Schrijvers 1997). Up to now, in all the
methods based on line-profile variations, the non-adiabatic
character of the pulsation was entirely neglected or treated
with an ad hoc parameter (Lee et al. 1992; Townsend
1997). The pulsation is always highly non-adiabatic in the
superficial layers of a star, i.e. from the transition region
(where the thermal relaxation time is of the same order
as the pulsation period) to the surface. The use of the
adiabatic approximation is thus inappropriate to obtain
credible values for eigenfunctions such as δT/T or δF in
the atmosphere.

Send offprint requests to: M.-A. Dupret,
e-mail: dupret@astro.ulg.ac.be

Different authors (Dziembowski 1977; Saio & Cox
1980; Pesnell 1990) have already performed calculations
of non-radial non-adiabatic stellar pulsations, but none of
their studies includes a detailed treatment of the pulsa-
tion in the line forming region. The goal of our study is to
derive such a treatment, and to show how the results ob-
tained can be used to obtain more reliable theoretical line-
profile variations. In this paper, we improve the treatment
proposed in Dupret (2001), by deriving better equations
to model the temperature variations in the atmosphere
(Sect. 3.1) and taking more appropriately the radiation
into account in the dynamical equations (Sect. 3.2). Our
treatment does not use the diffusion approximation in
the atmosphere. It is based instead on the hypothesis
that the atmosphere remains in radiative equilibrium dur-
ing the pulsation.

Our approach can be summarized as follows. In order
to obtain better eigenfunctions in the atmospheric layers,
the stellar model is subdivided into two parts: the interior
and the atmosphere. The equations used in the interior are
briefly recalled in Sect. 2. As some of them are no longer
valid in the atmosphere, we use a more adequate treat-
ment to model the pulsation in that region, as explained
in Sect. 3. The eigenfunctions are then computed glob-
ally (interior + atmosphere) using the two different sets
of differential equations for the two parts of the star, and
with the appropriate matching and boundary conditions.
We will refer to the layer that connects the two regions
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as the connecting layer. Typically, the depth of the con-
necting layer corresponds to a Rosseland optical depth
τross = 4, but our results are not affected by moderate
changes in the choice of this layer. The outermost layer
of the model corresponds to a very small optical depth
(log τross = −4.125). Therefore, the whole line forming re-
gion is included in our modeling. In what follows, we use
the notation δX for the Lagrangian variation of a quantity
X andX ′ for its Eulerian variation. For the sake of brevity,
we use the notation τ (resp. κ) for the Rosseland mean op-
tical depth (resp. opacity). As we neglect the influence of
rotation on pulsation, for a given spheroidal mode, each
scalar quantity is proportional to the spherical harmonic
Y m` (θ, ϕ), and the displacement vector is written:

ξ(r, θ, ϕ) = ξr(r)Y m` (θ, ϕ)er + ξh(r)(
∂Ym`
∂θ

(θ, ϕ)eθ +
1

sin θ
∂Ym`
∂ϕ

(θ, ϕ)eϕ

)
, (1)

where ξr(r) is the radial part of the displacement in the
radial direction and ξh(r) is the radial part of the dis-
placement in the transversal direction (same notations as
in Unno et al. 1989).

2. Treatment of the stellar interior

The formalism and numerical method we use to model and
compute the non-radial non-adiabatic oscillations in the
interior are almost the same as those detailed in Dupret
(2001). The only difference is that we adopt the Eulerian
perturbation of the gravitational potential instead of the
Lagrangian perturbation because it is better suited to the
computation of high-order g-modes. We work in the lin-
ear approximation, we neglect the influence of rotation on
pulsation, we neglect the Lagrangian variation of the con-
vective luminosity (frozen convection) and finally, we use
the diffusion approximation to compute the perturbed ra-
diative flux. The equations used in the interior are briefly
recalled below. In these equations, r is the radial coordi-
nate, Mr is the mass inside the radius r, ω is the angular
frequency of oscillation, ψ is the gravitational potential, g
is the gravity, P is the total pressure, ρ is the density, S is
the entropy, cv is the specific heat at constant volume, T is
the temperature, L is the luminosity at radius r, Fr is the
radial component of the flux, ` is the degree of the spheri-
cal harmonic Y m` (θ, ϕ), δLr ≡ δ(4πr2Fr) and ε is the rate
of energy generation (mainly by nuclear reactions). The
radial component of the equation of momentum conserva-
tion reads:

ω2ξr =
∂ψ′

∂r
+
∂(g ξr)
∂r

+
∂(δP/P )

∂r

P

ρ
+
(
δρ

ρ
− δP

P

)
g. (2)

The transversal component of the equation of momentum
conservation reads:

ω2ξh =
1
r

(
ψ′ + g ξr +

δP

ρ

)
· (3)

The equation of mass conservation together with Eq. (3)
gives:

δρ

ρ
+

1
r2

∂

∂r

(
r2ξr

)
− `(`+ 1)

ω2r2

(
ψ′ + g ξr +

δP

ρ

)
= 0 . (4)

The perturbed Poisson equation reads:

1
r2

∂

∂r

(
r2 ∂ψ

′

∂r

)
− `(`+ 1)

r2
ψ′ = 4πG (δρ− dρ

dr
ξr) . (5)

And finally, the equation of energy conservation reads:

iω Tcv

(
δS

cv

)
= −∂ δLr

∂Mr
+ ε

(
δε

ε
+
δρ

ρ
+

1
r2

∂ (r2ξr)
∂r

)
+`(`+ 1)

L

4πρr3

(
δT

r dT/dr
− ξr

r

)
, (6)

where Lr = 4πr2Fr. In the diffusion approximation,
δLr/L is given by:

δLr
L

= 2
ξrvv

r
+ 3

δT

T
− δκ

κ
− δρ

ρ
+
∂δT/∂r

dT/dr
− ∂ ξr

∂r
· (7)

3. Treatment of the atmosphere

The system of equations used in the interior is no longer
valid in the atmosphere, for two reasons. Firstly, the dif-
fusion equation relating the radiative flux to the local gra-
dient of temperature is no longer valid, and secondly, the
interior approximation of the radiative pressure

PR =
1
3
a T 4 (8)

is also no longer valid in the atmosphere. In Sect. 3.1, we
explain how Eqs. (6) and (7) can be replaced by a more
appropriate one. Avoiding Eq. (8) will require a rewriting
of the momentum equation, as explained in Sect. 3.2. In
Sect. 3.3, we give the surface boundary conditions used to
close the problem.

3.1. Radiative equilibrium in the local atmosphere

In a non-radially pulsating star, all the eigenfunctions have
an angular dependence. It is therefore useful to define a
“local atmosphere” as the gas column at a given angular
position (θ, ϕ), and at a given time. In what follows we
will always refer to this local atmosphere although we will
often omit the word “local” for the sake of brevity.

An important property of the atmosphere of a pulsat-
ing star is that its heat capacity is very small. Defining
the thermal relaxation time of the atmosphere as the time
necessary for it to lose all its internal energy with a lumi-
nosity L:

τth =
∫

atm.

T cv dm / L , (9)

we find typical values τth ≈ 1 s for the atmosphere of β
Cephei as well as Slowly Pulsating B stars (SPBs), which
is much smaller than their typical pulsation periods. In a



M.-A. Dupret et al.: Influence of temperature variations on line profiles of β Cephei stars and SPBs. I. 565

very good approximation, we can therefore assume that,
for β Cephei stars and SPBs, the local atmosphere remains
in radiative equilibrium during the pulsation (∇ · F = 0).

A hydrostatic equilibrium atmosphere model in the
plane-parallel approximation is entirely determined by its
effective temperature Teff , its gravity g and its chemical
composition. Given the chemical composition, the local
temperature can therefore be written as a function of the
Rosseland mean optical depth τ , Teff and g:

T = T (τ, Teff , g). (10)

Considering the radiative equilibrium property of the local
atmosphere, our main approximation is to assume that,
at each phase during the pulsation cycle, the T (τ) law
in the local atmosphere is the same as the T (τ) law of
an equilibrium atmosphere model. During the pulsation,
the two parameters Teff and g characterising the equilib-
rium atmosphere model, and thus the local atmosphere,
are varying with time and are function of θ and ϕ. For a
given time and a given (θ, ϕ), the temperature in the lo-
cal atmosphere (equilibrium value + perturbation) is thus
given by:

T0 + δT = T (τ0 + δτ , Teff 0 + δTeff , g0 + δge) , (11)

where δτ is the Lagrangian perturbation of the Rosseland
mean optical depth; we remark that layers of constant
optical depth do not follow the motion of matter. δTeff

is the variation of the effective temperature of the local
atmosphere. δge is the variation of the local gravity from
the point of view of a comoving frame, i.e. the gravity
corrected for the pulsational acceleration.

In the linear approximation, Eq. (11) gives:

δT

T
=

∂ lnT
∂ lnTeff

δTeff

Teff
+

∂ lnT
∂ ln ge

δge

ge
+

∂ lnT
∂ ln τ

δτ

τ
· (12)

For a given mode, the different perturbed quantities ap-
pearing in this equation are proportional to the spheri-
cal harmonic Y m` (θ, ϕ). Perturbing the definition of the
Rosseland mean optical depth leads to:

∂δτ

∂τ
=
δκ

κ
+
δρ

ρ
+
∂ ξr
∂r
· (13)

And finally, eliminating δτ between Eq. (12) and Eq. (13)
gives:

∂(δT/T )
∂ ln τ

=
∂ lnT
∂ ln τ

(
δκ

κ
+
δρ

ρ
+
∂ ξr
∂r

)
−
(

1− ∂2 lnT/∂ ln τ2

∂ lnT/∂ ln τ

)
(
δT

T
− ∂ lnT
∂ lnTeff

δTeff

Teff
− ∂ lnT
∂ ln ge

δge

ge

)
+

∂2 lnT
∂ ln τ∂ lnTeff

δTeff

Teff
+

∂2 lnT
∂ ln τ∂ ln ge

δge

ge
· (14)

It is Eq. (14) that we use instead of Eqs. (6) and (7) in
the atmosphere. The different derivatives appearing in this

equation are numerically estimated using a family of hy-
drostatic equilibrium atmosphere models with different ef-
fective temperatures and gravities bracketing those of the
reference equilibrium model around which the star is oscil-
lating. In our applications, we use the atmosphere models
by Kurucz (1993). How we compute δTeff/Teff and δge/ge

is explained in Sect. 3.3.

3.2. Acceleration due to the radiation

In the previous section, we argued that the temperature
distribution of the local atmosphere can be obtained from
an equilibrium atmosphere model. The pressure and den-
sity distributions as well as the displacement vector, how-
ever, must be computed by solving the equations of conser-
vation of mass and momentum in the entire atmosphere.
In what follows we explain how this is done.

In the outer atmosphere of a star, the radiation field
is no longer isotropic. As a consequence, the radiation
pressure tensor cannot be represented anymore by a di-
agonal matrix with constant elements and the law PR =
(1/3) a T 4 is no longer valid (see e.g. Mihalas & Weibel-
Mihalas 1999, Sect. 66). We recall that the equilibrium
quantities we use in the atmosphere are obtained from the
models of Kurucz (1993). In these models, the total pres-
sure gradient is split up into the gas pressure gradient and
the acceleration due to the radiation (see Kurucz 1970,
Sect. 2.11). In the perturbed model, we proceed in the
same way, which permits to keep the consistency with the
equilibrium model. The momentum equation reads then:

∂v

∂t
+ v · ∇v = −∇ψ − ∇Pg

ρ
+ aR , (15)

where v is the velocity, Pg is the gas pressure and aR is
the acceleration vector due to the radiation. In this case,
the flux-weighted mean opacity κF is very useful since it
can relate directly the acceleration due to the radiation to
the flux:

aR = κFF /c , (16)

(see e.g. Mihalas & Weibel-Mihalas 1999, Sect. 82). To
obtain the perturbed momentum equation, we make the
following assumptions:

a1) We assume that δ|F | remains constant from the base
of the atmosphere to the outermost layer.

a2) We assume that the flux vector F is parallel with
−∇T during the entire pulsation cycle.

a3) We approximate the relative variation of the flux-
weighted mean opacity by the relative variation of
the Rosseland opacity: δκF/κF ' δκ/κ.

To justify assumption (a1), we recall that the equilibrium
atmosphere models we use (Kurucz models) are obtained
assuming that the atmosphere is in radiative equilibrium
and that it is so thin that a plane parallel approximation
can be adopted. These two hypotheses imply that the equi-
librium flux is assumed to be constant. As pointed out in
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Sect. 3.1, the very small thermal relaxation time of the
atmosphere permits us to assume that the local atmo-
sphere remains in radiative equilibrium during the pul-
sation. This leads us to assume, for the same reasons as
in equilibrium, that δ|F | remains constant in the atmo-
sphere. Under the diffusion approximation, assumptions
(a2) and (a3) are clearly valid (see e.g. Mihalas & Weibel-
Mihalas 1999, Sect. 82 for the equivalence between the
two mean opacities). Assumptions (a2) and (a3) do not
imply that the diffusion approximation is valid, because
we adopt the equilibrium values of aR given by the at-
mosphere models of Kurucz, instead of obtaining them by
computing the derivative of Eq. (8). It is not easy to exam-
ine to what extent assumptions (a2) and (a3) remain valid
in the outermost layers of the atmosphere. We did different
tests by changing artificially the coefficients of the equa-
tions associated to these assumptions and the conclusion
is that the errors coming from them have a negligible im-
pact on the final results of our study.

Assumption (a1) together with Stefan’s law gives at
first order:

δ|F |
|F | =

δFr
Fr

= 4
δTeff

Teff
· (17)

Then, assumption (a3) together with Eq. (16) gives, for
the radial component of δaR:

(δaR)r = aR

(
δκ

κ
+ 4

δTeff

Teff

)
· (18)

In the following equations, aR corresponds to the equilib-
rium value of the acceleration due to the radiation. This
quantity is obtained at each layer directly from the Kurucz
atmosphere models. From Eqs. (15) and (18), the radial
component of the perturbed momentum equation reads
finally:

ω2ξr =
∂(δPg/Pg)

∂r

Pg

ρ

+
∂ψ′

∂r
+
∂(g ξr)
∂r

+
(
δρ

ρ
− δPg

Pg

)
(g − aR)

−aR

(
δκ

κ
+ 4

δTeff

Teff
+
∂ ξr
∂r

)
· (19)

Assumption (a2) is used to compute the transversal com-
ponent of the momentum equation, and we find:

ω2ξh =
1
r

(
δPg

ρ
+ ψ′ + g ξr − aR

δT

∂T/∂r

)
· (20)

Consequently, the continuity equation reads:

δρ

ρ
+

1
r2

∂

∂r

(
r2ξr

)
=

`(`+ 1)
ω2r2

(
δPg

ρ
+ ψ′ + g ξr −

aR δT

∂T/∂r

)
· (21)

Equations. (19) and (21) are used in the atmosphere in-
stead of Eqs. (2) and (4). In the following subsection, we
will show that these two sets of equations coincide at the
connecting layer between interior and atmosphere.

3.3. Boundary and matching conditions

The matching conditions we impose are the continuity of
the different perturbed variables at the connecting layer
between the interior and the atmosphere. The matching
condition imposed on the perturbed flux allows us to com-
pute δTeff/Teff. Indeed, from Eqs. (7) and (17), we find at
the connecting layer:

3
δT

T
− δκ

κ
− δρ

ρ
+
∂δT/∂r

dT/dr
− ∂ ξr

∂r
= 4

δTeff

Teff
· (22)

Also δge/ge is obtained at the connecting layer. The vari-
ation of the gravity from the point of view of a comoving
frame reads:

δge = −(δge)r = δ(∂ψ/∂r)− ω2ξr · (23)

After some simple developments, we find then:

δge

ge
=
∂ψ′/∂r

g
+

4πρ r3

Mr

ξr
r
−
(

2 +
ω2r

g

)
ξr
r
· (24)

And we note that under the Cowling approximation and
neglecting the surface density divided by the mean density
of the star, this equation takes the very simple form:

δge

ge
= −

(
2 +

ω2r

g

)
ξr
r
· (25)

It is important to realize that Eqs. (19) and (21) mathe-
matically coincide with Eqs. (2) and (4) at the connecting
layer. This follows directly from Eqs. (8) and (22). As
a consequence, the derivatives of ξr/R and δPg/Pg are
continuous at the connecting layer. The continuity of the
derivative of δT/T at the connecting layer is not imposed
by the equations. For all the modes we have computed, the
smoothness of δT/T at the connecting layer was found a
posteriori (see Figs. 4 and 5). This confirms the validity
of our treatment.

Different boundary conditions have to be imposed at
the outermost layer of the model. Firstly, we have the
mechanical boundary condition. Usually, the mechanical
boundary condition is obtained by assuming that the third
term of the right hand side of Eq. (2) goes to zero at
the surface. This condition is justified either by assuming
that limτ→0 P/(ρ g R) = 0 (Cox 1980, Sect. 17.6b) or by
assuming that ∂(δP/P )/∂r = 0 at the surface (Pesnell
1990). However, for massive stars such as β Cephei stars
and SPBs, the acceleration due to the radiation (aR) can-
not be neglected in Eq. (15). Our mechanical boundary
condition is obtained by neglecting the contribution due
to the gas pressure alone. More precisely, we neglect the
first term of Eq. (19) at the surface, and the mechanical
boundary condition is:

ω2ξr =
∂ψ′

∂r
+
∂(g ξr)
∂r

+
(
δρ

ρ
− δPg

Pg

)
(g − aR)

− aR

(
δκ

κ
+ 4

δTeff

Teff
+
∂ ξr
∂r

)
· (26)

The potential boundary condition is, as usual, obtained by
imposing a first order continuous match (i.e. continuity of



M.-A. Dupret et al.: Influence of temperature variations on line profiles of β Cephei stars and SPBs. I. 567

ψ′ and its first derivatives) between the inner solution of
the Poisson equation and the outer solution of the Laplace
equation (Ledoux & Walraven 1958):

∂ψ′

∂r
+
`+ 1
r

ψ′ = −4πGρ ξr. (27)

Finally, also Eq. (14) needs a boundary condition. It is ob-
tained by evaluating Eq. (12) at the outermost layer. Using
the rule of l’Hospital and Eq. (13) to evaluate limτ→0 δτ/τ ,
we obtain the following boundary condition at the surface:

δT

T
=

∂ lnT
∂ ln Teff

δTeff

Teff
+

∂ lnT
∂ ln ge

δge

ge

+
∂ lnT
∂ ln τ

(
δκ

κ
+
δρ

ρ
+
∂ ξr
∂r

)
· (28)

3.4. Comparison with other approximations

To place our approximation in a broader context, we
first recall the basic approximations made in three dif-
ferent equilibrium atmosphere models: the Eddington
atmosphere, the grey atmosphere and the non-grey
(e.g. Kurucz) atmosphere.

The Eddington atmosphere is a plane-parallel, grey at-
mosphere, in radiative equilibrium and in LTE, where it
is assumed that J = 3K (J is the mean intensity and K
is the second angular moment of the radiation field). Its
temperature distribution obeys the following well known
law:

T 4(τ) =
3
4
T 4

eff

(
τ +

2
3

)
· (29)

For a more general grey atmosphere, it is not assumed that
J = 3K, and the temperature distribution is given by

T 4(τ) =
3
4
T 4

eff (τ + q(τ)) , (30)

where q(τ) is the well known Hopf function, which can
be determined analytically as well as numerically (see e.g.
Mihalas 1978). We note that the Hopf function is unique,
it does not depend on the effective temperature and grav-
ity of the atmosphere. Finally, if we consider much more
precise non-grey atmospheres (such as the models of Ku-
rucz), the temperature distribution takes a general form
given by Eq. (10). We emphasize that non-grey Kurucz at-
mospheres differ significantly from Eddington and grey at-
mospheres. In Fig. 1, we compare the temperature distri-
bution of a Kurucz atmosphere to the one of an Eddington
atmosphere for a 10M� β Cephei model. We see that
the two distributions are very different in most of the at-
mosphere. In particular, the steep temperature gradient
found up to very small optical depths in the Kurucz at-
mosphere is not present in the Eddington atmosphere.

Our method is easily understood by following the same
line of reasoning, going from Eddington atmospheres to
non-grey atmospheres, in the case of pulsating stars. More

Fig. 1. Temperature distribution of a Kurucz atmosphere
model (solid line) compared to the one of an Eddington model
(dashed line), in the atmosphere of a 10 M� β Cephei model.
The abscissa corresponds to the logarithm of the Rosseland
optical depth.

precisely, in a pulsating star, the Eddington approxima-
tion leads to the following equations (Saio & Cox 1980;
Balmforth 1992):

F = − 4π
3(κ+ σ)ρ

∇J , (31)

J = B +
T

4πκ
dS
dt
· (32)

In a plane-parallel atmosphere at radiative equilibrium,
this system of equations reduces to Eq. (29) (see e.g.
Mihalas & Weibel-Mihalas 1999, Sect. 82). In particu-
lar, we note that the hypothesis of hydrostatic equilibrium
need not be made in order to obtain Eqs. (29) and (30). In
the beginning of Sect. 3.1, we argued that the hypothesis
of radiative equilibrium can be applied to the perturbed
atmosphere, and the plane-parallel hypothesis is certainly
acceptable in our applications. Therefore, adopting the
Eddington approximation in the atmosphere of a pulsat-
ing star reduces in very good approximation to perturb-
ing Eq. (29). For the same physical reasons, making the
grey approximation in the atmosphere of a pulsating star
leads simply to perturbing Eq. (30), an approach which
is adopted by Dupret (2001). In this paper, we proceed
in the same way, but now for the more realistic non-grey
atmosphere models, which leads us to perturb Eq. (10).

We conclude that the Eddington approximation as well
as the grey atmosphere approximation are particular cases
of the more general approach presented in Sect. 3.1. As
the Eddington and grey atmospheres do not lead to a
good temperature distribution in the outer layers of the
atmosphere (see Fig. 1), the gain is significant when us-
ing more realistic non-grey atmosphere models as we do.
It is important to note that, in the general method of
small perturbations, the use of an approximation (e.g. the
Eddington approximation) in the perturbed model makes
sense if and only if it is made in the equilibrium model as
well. Therefore, one of the main advantages of our method
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is simply that it permits to use better equilibrium models
(the Kurucz atmosphere models).

It could be argued that consistency is somehow lost
in our method, because the Kurucz atmosphere models
make explicitly the hypothesis of hydrostatic equilibrium,
which is not valid for pulsating stars. We argue however,
that the gain with our method is significant. First, the ap-
parent loss of consistency is not important for SPB high
order g-modes and β Cephei low order p-modes. If we
compare, for example, the values of δPg/Pg obtained by
our method (solving the momentum equations through-
out the entire atmosphere) to the ones consistent with the
static Kurucz models, we find relative differences between
10 and 20%, depending on the mode order. Secondly, the
coupling between the thermal structure of the atmosphere
(T (τ) and Teff) and its dynamical structure (linked in first
approximation to its effective gravity) is generally small.
The coefficient ∂ lnT/∂ ln ge appears to be much smaller
than ∂ lnT/∂ lnTeff , and even with the significant values
of δge/ge found for the β Cephei p-modes, the correspond-
ing term in Eq. (12) remains much smaller than the two
other ones (see Fig. 4 in Sect. 4). It is only for high-order
p-modes with frequencies close to the acoustic cut-off, that
our use of hydrostatic Kurucz models becomes more ques-
tionable. For such modes, the only rigorous way would
be to solve explicitly the perturbed equations of radiation
hydrodynamics, which is beyond the scope of our current
study.

We do not claim that the use of the Eddington and
diffusion approximations are inappropriate in the study of
non-adiabatic oscillations. For the study of the excitation
and damping mechanisms in pulsating stars, these approx-
imations remain perfectly appropriate since these mecha-
nisms occur in layers much deeper than the atmosphere.
Similarly, the adiabatic approximation remains suitable
for the computation of the frequencies of g-modes and
moderate order p-modes, as they are determined mostly
by the internal layers.

As a final remark, we note that a better thermal
boundary condition has been proposed by Gabriel (1989).
The problem with Gabriel’s treatment is that it applies
only to the very superficial layers of a star, where matter
and radiation no longer interact, but no treatment is pro-
posed between the photosphere and these very superficial
layers.

4. Results

As an illustration, we present in this section some of the
results obtained for a typical β Cephei model and for a
typical SPB model.

The β Cephei equilibrium model is near the TAMS
and it has the following characteristics:

M = 10M� log(g) = 3.76
Teff = 22 643 K X = 0.7
L = 11 339L� Z = 0.02
R = 6.93R� Age = 18.58 Myr.

Table 1. Properties of non-adiabatic eigenfunctions in the at-
mosphere for different p-modes of a 10M� model (β Cephei).
|δTeff/Teff | is the modulus of δTeff/Teff , φT is the phase dif-
ference between δTeff/Teff and ξr in degrees, (δge/ge)< is the
real part of δge/ge, (ξh/ξr)< is the real part of ξh/ξr and P is
the period in hours. The eigenfunctions are normalized so that
ξr/R = 1 at τ = 2/3.

mode
∣∣∣ δTeff
Teff

∣∣∣ φT (◦)
(
δge
ge

)
<

(
ξh
ξr

)
<

GM
ω2R3 P (h)

` = 1 p1 3.07 179 −22.02 0.048 0.049 3.56
` = 1 p2 3.48 −173 −28.52 0.036 0.037 3.09
` = 1 p3 3.86 −165 −36.42 0.027 0.028 2.71

` = 2 f 3.48 −174 −28.16 0.036 0.038 3.11
` = 2 p1 3.71 −169 −32.57 0.031 0.032 2.87
` = 2 p2 4.02 −161 −40.63 0.024 0.025 2.55
` = 2 p3 4.23 −148 −55.04 0.017 0.018 2.17

` = 3 f 3.69 −170 −31.71 0.032 0.033 2.92
` = 3 p1 4.13 −158 −44.54 0.021 0.023 2.43
` = 3 p2 4.25 −151 −51.60 0.018 0.020 2.24
` = 3 p3 4.23 −144 −60.31 0.015 0.017 2.06

` = 4 f 3.92 −165 −36.40 0.027 0.029 2.71
` = 4 p1 4.21 −155 −47.98 0.020 0.021 2.33
` = 4 p2 4.19 −141 −64.45 0.014 0.015 1.99

` = 5 f 4.25 −155 −48.04 0.020 0.021 2.33
` = 5 p1 4.27 −152 −51.25 0.018 0.020 2.25
` = 5 p2 4.13 −138 −68.22 0.013 0.015 1.93

The SPB equilibrium model is halfway between the ZAMS
and the TAMS and it has the following characteristics:

M = 5M� log(g) = 3.93
Teff = 15 190 K X = 0.7
L = 765L� Z = 0.02
R = 4.00R� Age = 59.07 Myr.

In these two models, R is by definition the radius at
τ = 2/3. We recall that in our models, the outermost
layer of the atmosphere corresponds to a much smaller
optical depth (log τ = −4.125).

In Tables 1 and 2, we give some of the results obtained
for different modes in the atmosphere. Table 1 corresponds
to the β Cephei model and Table 2 to the SPB model. All
the eigenfunctions are normalized so that ξr/R = 1 at
τ = 2/3.

In the second column, we give |δTeff/Teff |. For the β
Cephei model, the values obtained are relatively small. For
the SPB model, we see that |δTeff/Teff| increases quickly
as the order of the mode increases.

In the third column, we give the phase difference be-
tween δTeff/Teff and ξr in degrees (φT ). We recall that
in the adiabatic case, the temperature variations are in
opposite phase with the radial displacement for β Cephei
p-modes and on the contrary, that they are in phase with
the radial displacement for SPB g-modes. Due to the non-
adiabaticity of the superficial layers, the values of φT we
obtain are no longer exactly±180◦ or 0◦. Comparing φT to
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Table 2. Properties of non-adiabatic eigenfunctions in the at-
mosphere for different g-modes of a 5M� model (SPB), same
quantities as in Table 1.

mode
∣∣∣ δTeff
Teff

∣∣∣ φT (◦)
(
δge
ge

)
<

(
ξh
ξr

)
<

GM
ω2R3 P (h)

` = 1 g20 3.66 −41 −2.02 17.77 17.29 41.36
` = 1 g25 5.78 −33 −1.99 25.02 24.09 48.82
` = 1 g30 8.80 −24 −1.95 36.87 34.86 58.73
` = 1 g35 11.72 −17 −1.94 51.44 47.16 68.31
` = 1 g40 14.28 −11 −1.89 69.15 62.10 78.38
` = 1 g45 16.48 −6.2 −1.85 90.11 78.47 88.11
` = 1 g50 18.29 −2.6 −1.79 114.6 96.78 97.85

` = 2 g20 2.06 −46 −2.14 5.95 5.80 23.96
` = 2 g25 4.23 −39 −2.07 9.01 8.65 29.25
` = 2 g30 7.15 −31 −2.01 13.18 12.40 35.03
` = 2 g35 10.30 −23 −1.96 18.39 16.88 40.86
` = 2 g40 13.07 −17 −1.91 24.12 21.56 46.18
` = 2 g45 15.88 −11 −1.87 31.79 27.45 52.11
` = 2 g50 18.29 −6.6 −1.82 40.73 33.84 57.86
` = 2 g55 20.32 −3.1 −1.78 50.68 40.41 63.23
` = 2 g60 22.38 0.1 −1.72 64.05 48.46 69.24

` = 3 g20 1.14 −30 −2.30 3.00 2.93 17.02
` = 3 g25 2.78 −35 −2.18 4.54 4.35 20.75
` = 3 g30 5.27 −32 −2.09 6.61 6.22 24.81
` = 3 g35 8.32 −27 −2.02 9.23 8.47 28.95
` = 3 g40 11.23 −21 −1.96 12.10 10.81 32.71
` = 3 g45 14.37 −15 −1.90 15.92 13.75 36.88
` = 3 g50 17.18 −10 −1.85 20.41 16.95 40.96
` = 3 g55 19.58 −5.8 −1.80 25.39 20.24 44.75
` = 3 g60 22.02 −2.0 −1.73 32.06 24.25 48.98
` = 3 g65 24.33 1.0 −1.67 40.06 28.55 53.15

the adiabatic phase difference shows that the extra phase
lag increases as the order of the mode increases for the
β Cephei p-modes and on the contrary, that the extra
phase lag decreases as the order of the mode increases for
the SPB g-modes.

In the fourth column, we give the real part of δge/ge.
The imaginary part turns out to be always negligible. We
recall that δge/ge is the Lagrangian variation of the grav-
ity from the point of view of a comoving frame. We see
that, for the β Cephei model, the values obtained increase
quickly with the order of the mode. This comes from the
increasing frequency and therefore increasing acceleration
of the matter for a fixed displacement amplitude – term
ω2ξr in Eq. (23). Although our method is appropriate for
g-modes and moderate-order p-modes, this rapid increase
of the amplitude of δge/ge with frequency leads us to sus-
pect that our approach becomes more questionable for
high-order p-modes with frequencies close to the acoustic
cut-off. For the SPB g-modes, we see that δge/ge remains
very small.

In the fifth column, we give the real part of ξh/ξr
at τ = 2/3, and in the sixth column, we give the real
part of GM/(R3ω2), which is sometimes used to approx-
imate ξh/ξr. The imaginary part of ξh/R, and thus the

Fig. 2. Amplitude of the non-adiabatic eigenfunctions
δLr/(4L) (dotted line) and δT/T (solid line) and of the adia-
batic relative temperature variation (dot-dashed line) for the
mode ` = 1, p1, from the center to the surface of a 10 M�
β Cephei model.

non-adiabatic phase difference between the radial and
transversal motions, turns out to be always negligible.
Comparing Cols. 5 and 6 shows that this approximation
is very good for the β Cephei model, while it is less ac-
curate for the highest order g-modes of the SPB model.
To understand the difference between the two, we recall
that ξh/ξr ' GM/(R3ω2) is a result obtained by adopting
the Cowling approximation, and assuming that δP/ρ = 0
at the surface. The latter approximation is reasonable if
the radiation pressure is negligible at the surface. For hot
stars however, this is not the case and it is reflected by a
non-negligible contribution of the radiative acceleration in
Eq. (20). It is this contribution (the term aR δT/(∂T/∂r)
to be precise) that makes the difference. Although the
equilibrium radiative acceleration (aR) is larger for the
hotter β Cephei stars than for the cooler SPBs, the con-
tribution of the term aR δT/(∂T/∂r) is larger for the SPB
highest order g-modes than for the β Cephei p-modes.
This comes from the much larger temperature variations
(δT ) found for the SPB highest order g-modes (for a fixed
radial displacement amplitude). Finally, we give in the last
column the period of the mode in hours.

As an illustration, we give in Figs. 2 and 3 the
amplitudes of the non-adiabatic temperature variation
(|δT/T |nad) and the adiabatic temperature variation
(|δT/T |ad = ∇ad |δP/P |ad), from the center to the sur-
face. Figure 2 corresponds to the mode ` = 1, p1 of the
β Cephei model and Fig. 3 to the mode ` = 1, g30 of the
SPB model. The abscissa corresponds to the logarithm
of the equilibrium temperature. We recall that the eigen-
functions are normalized in such a way that ξr/R = 1
at τ = 2/3. A simple comparison between the two graphs
shows how different they are in the superficial layers (from
the base of the driving region at logT ' 5.5 to the sur-
face). It illustrates clearly that adiabatic computations are
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Fig. 3. Amplitude of the non-adiabatic eigenfunctions
δLr/(4L) (dotted line) and δT/T (solid line) and of the adia-
batic relative temperature variation (dot-dashed line) for the
mode ` = 1, g30, from the center to the surface of a 5 M� SPB
model.

totally inadequate to obtain reliable values for the temper-
ature variations in the superficial layers of a star.

In the same figures, we also give |δLr/(4L)|. We see
that, for the two stars, the graph of |δLr/(4L)| becomes
flat from log T ' 5 to the surface. This phenomenon is
well known for radial modes and is easily generalized for
non-radial modes since for small `, the terms proportional
to `(` + 1) do not play a significant role in Eq. (6). This
is due to the very small thermal relaxation time of these
layers. Finding already the flat behaviour of δLr in much
deeper layers than the base of the atmosphere confirms
that the hypothesis of radiative equilibrium we adopt in
the atmosphere is adequate.

In Figs. 4 and 5, we give the graph of |δT/T | in
the atmosphere (same models and same modes as pre-
viously). The abscissa corresponds to the logarithm of the
Rosseland optical depth. The smoothness of the graphs
confirms that the two specific treatments in the inte-
rior and in the atmosphere match very well at the con-
necting layer. On the same figures, we give the mod-
ulus of the different terms of Eq. (12). For the SPB
mode, |∂ lnT/∂ ln ge δge/ge| turns out to be totally neg-
ligible and it is not given. For the β Cephei model, we
see that this quantity remains very small in compari-
son with the other terms. It is important to note that
the term |∂ lnT/∂ ln τ δτ/τ | is large (particularly for the
SPB model). Physically, it means that the Lagrangian
variation of the temperature (δT/T ) and the variation
of the temperature at constant optical depth (∆τT/T '
∂ lnT/∂ lnTeff δTeff/Teff) are two totally different quanti-
ties. It could seem surprising that |∂ lnT/∂ ln τ δτ/τ | does
not go to zero at the outermost layer (log τ = −4.125).
This comes from the significant values of ∂ lnT/∂ ln τ
in the Kurucz atmosphere models, even at very small
optical depths. In order to examine if this “surprising”
phenomenon has a significant impact on the results,

Fig. 4. Amplitude of δT/T (solid line) and the moduli of the
different contributing terms of the right-hand side of Eq. (12).
The dashed line with the label “(1)” is the modulus of the first
term (∝ δTeff/Teff), the dotted line with the label “(2)” is the
modulus of the second term (∝ δge/ge), the dot-dashed line
with the label “(3)” is the modulus of the third term (∝δτ/τ ),
the vertical line corresponds to the connecting layer between
interior and atmosphere. The functions were computed for the
mode ` = 1, p1, in the atmosphere of the 10 M� β Cephei
model. We note for the comparison that |δTeff/Teff | = 3.07 for
this mode.

Fig. 5. Same as Fig. 4 for the mode ` = 1, g30, in the atmo-
sphere of the 5M� SPB model. We note that the contribution
of the second term (∝δge/ge) is so small that it is invisible on
this plot, and |δTeff/Teff | = 8.80 for this mode.

we examined the results obtained by putting artificially
∂ lnT/∂ ln τ δτ/τ to zero at the outermost layer (last term
of Eq. (28)). Only the values of δT/T in the outermost
layers (between log τ = −2 and log τ = −4.125) are sig-
nificantly affected by this artificial change. The impact on
the other results, such as δTeff/Teff is found to be negligi-
ble. We note that δTeff/Teff will be used instead of δT/T
in the simulations of line profile time series that will be
presented in the second paper of the series.

Comparing the graphs of |δT/T | to the values of
|δTeff/Teff | given in Tables 1 and 2 for the same modes
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shows that they are very different, particularly in the deep-
est layers of the atmosphere. This leads us to compare the
boundary condition we impose on the flux – Eqs. (17)
and (22) – to the thermal boundary condition adopted
by Dziembowski (1977) and Pesnell (1990), which reads:
δLr/L = 2 ξr/r + 4 δT/T . For the latter, it is assumed
implicitly that δT/T = δTeff/Teff at the outermost layer
of the model. Since we found that these two quantities
are very different, our treatment appears as a significant
improvement.

5. Conclusions

In this paper, we derived a method to compute the non-
adiabatic eigenfunctions in the interior as well as in the
atmosphere of a non-radially pulsating star. Special care
was given to the treatment of the perturbed atmosphere,
and on this point we improved the method proposed by
Dupret (2001). Based on the hypothesis that the atmo-
sphere remains in radiative equilibrium during the pul-
sation, the non-adiabatic pulsation code we implemented
does not use the diffusion approximation in the atmo-
sphere, but assumes instead that the temperature distri-
bution in the local dynamical atmosphere is for each given
time and (θ, ϕ) the same as the one of a Kurucz equilib-
rium model with varying effective temperature and gravity
(Sect. 3.1). Particular care was also taken of the modeling
of the radiative acceleration in the momentum equations
(Sect. 3.2) and of the determination of the boundary con-
ditions (Sect. 3.3). Finally, some of the results obtained for
a typical β Cephei star and a typical Slowly Pulsating B
star were presented (Sect. 4). On the basis of these results,
we can give the following conclusions (to avoid confusion,
we recall that all the quantities such as δT/T , δTeff/Teff

and δge/ge are “local” in the sence that they refer to a
given point (θ, ϕ) of the stellar surface).

– Our non-adiabatic modeling of the temperature vari-
ations in the atmosphere based on the hypothesis of
radiative equilibrium (Sect. 3.1) permits to find more
accurate values of δT/T and δTeff/Teff in the atmo-
sphere than by using the diffusion approximation.

– For a fixed radial displacement amplitude, the varia-
tion of the local effective temperature (δTeff/Teff) is
relatively small compared to the other eigenfunctions
for the β Cephei p-modes, but it becomes important
for the highest order g-modes of the SPB model.

– For the β Cephei p-modes and for a fixed radial dis-
placement amplitude, the variation of the gravity from
the point of view of a comoving frame (δge/ge) in-
creases rapidly with the radial order of the mode and
can go up to significantly large values.

– The Lagrangian variation of the temperature (δT/T )
decreases a lot from the base to the outermost layer of
the atmosphere and is different from the variation of
the the local effective temperature

(δTeff/Teff), and from the variation of the temperature
at constant optical depth, it is therefore important to
make a clear distinction between these quantities.

By using our method, the local Teff and log(g) variations
come forward in a natural way which is very handy to
use in order to make simulations of line profile variations
based on Kurucz intensity grids. A method using our non-
adiabatic results to compute better line profile time series
will be presented in the second paper (De Ridder et al.
2002) of the series.
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