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Abstract. We study the regular families of periodic orbits in an analytical planar galactic potential,
using the method of Lindstedt. We obtain analytical expressions describing these orbits, validity of
which is not limited to small amplitudes. We can delimit, in the space of the parameters, the domain
of existence of each family of orbits.
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1. Introduction

It is well-known that the determination of periodic orbits is the first step in the study of
a dynamical system. Such an investigation has been carried out by Davoust (1983) for
a family of three-dimensional galactic potentials near resonances, using the method of
Lindstedt. The periodic solutions of the equations of motion were formally written as
power series of a parametere (which is set equal to 1 at the end of the calculations).
Setting equal to zero all terms which would give rise to secular terms, Davoust
obtained equations of condition relating the phases and amplitudes of the components
of motion and determined the solutions up to the first order ine. He was able to
describe qualitatively the families of regular periodic orbits at and near resonances
and his analytical solutions provided sufficiently accurate initial conditions to start
an efficient numerical search.

Of course, the use of the Lindstedt’s method is not limited to the first order, but the
complexity of the algebra increases dramatically with the order of the computation.
In a previous paper (Scuflaire, 1995, paper I in what follows) we used this method to
study axial motions in a logarithmic potential. The use of an algebraic programming
system (REDUCE) allowed us to obtain solutions in the form of power series of
the amplitudea of the motion (total energyE can be used instead ofa) up to high
orders (typically between 15 and 20). The transformation into continued fractions
gave rational expressions usable far outside the domain of convergence of the power
series. In a second step, the study of the stability of axial orbits provided boundaries
in the plane of the parameters for the loop and banana orbits resulting from the loss
of the stability of axial orbits.
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The purpose of the present work is to extend the method to the direct determination
of the regular two-dimensional periodic orbits up to high orders.

2. Equations of Motion

We use the two-dimensional logarithmic potential (Binney and Tremaine, 1987):

V (x, y) = 1

2
v2

0 ln

(
R2

c + x2 + y2

q2

)
, (1)

whereq 6 1 defines the ellipticity of the equipotential curves,Rc is the core radius
andv0 the circular velocity at large distance from the center whenq = 1. The motion
in any other analytical potential regular at the origin would be studied in the same
manner. TakingRc as the unit of length andRc/v0 as the unit of time, the expression
of the potential simplifies to

V (x, y) = 1

2
ln

(
1 + x2 + y2

q2

)
. (2)

The equations of motion read

ẍ + x

1 + x2 + y2/q2
= 0, (3)

ÿ + y

q2(1 + x2 + y2/q2)
= 0. (4)

To understand the origin of different families of periodic orbits, it may be useful
to recall that for infinitely small amplitude, the motion obeys the linear equations:

ẍ + x = 0, (5)

ÿ + y

q2
= 0. (6)

The angular frequencies ofx andy components of motion are, respectively,σx = 1
andσy = 1/q > σx . The motion is periodic only ifq is rational;q = m/n where
m andn are relatively prime withm 6 n. In this case the angular frequency of the
movement isσ = 2π/period = σx/m = σy/n = 1/m. In a period, the particle
performsm oscillations in thex direction andn oscillations in they direction. We
use the notationm : n to describe the family of periodic orbits originating from this
resonance. For motions of finite amplitude, the condition of existence of periodic
orbits of typem : n is not so demanding,q has only to belong to a neighbourhood of
m/n, whose size increases with increasing energyE. In Section 5, we establish the
precise limits of the domains of existence of different families of periodic solutions
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Figure 1.Schematic shapes of periodic orbits belonging to resonances 1 : 2, 2 : 3 and 3 : 4.

in the (q, E)-plane. For now, let us just say that the width1q of theq-domain of
existence of a periodic orbit of typem : n is given by

1q ≈ m

2n
E (7)

for small values of the energy. A similar estimate (1q ∝ E) for a different potential
has been obtained by Contopoulos (1965, Equation 137) where ourq andE must be
compared with his

√
A/B andh.

The values ofq lower than 1/2 are of no interest for stellar dynamics, so in the
following sections, we limit our study to the low order resonances 1 : 1, 1 : 2, 2 : 3,
3 : 4, 3 : 5 and 4 : 5. Figure 1 shows schematically the shapes of the periodic orbits
belonging to a few of these resonances and the names given to the families of orbits
parented by these periodic orbits (Miralda-Escudé and Schwarzschild, 1989).
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3. Method of Solution

The use of the Lindstedt’s method is well-known in celestial mechanics and described
in a number of textbooks (see, e.g. Nayfeh, 1973 or Hayashi, 1985). It has been used
and described by Presler and Broucke (1981a,b) and Davoust (1983) to determine
periodic orbit families in galactic potentials. The equations of motion are rewritten
as

[q2 + ε(q2x2 + y2)]ẍ + q2x = 0, (8)

[q2 + ε(q2x2 + y2)]ÿ + y = 0, (9)

where a parameterε has been inserted in front of the nonlinear terms. At the end of
the calculation we will setε = 1. However, this parameter enables us to write the
solutions as power series and to compute their terms iteratively:

x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · , (10)

y(t) = y0(t) + εy1(t) + ε2y2(t) + · · · . (11)

The angular frequency of the motion is also written as a power series ofε:

σ = σ0 + σ1ε + σ2ε
2 + · · · . (12)

To simplify the notations, the variables = σ t will be used instead oft and the
derivation with respect tos will be denoted by the prime symbol:f ′ = df/ds.

At order 0, we recover the linear case, the solution corresponding to them : n

resonance exists forq = q0 = m/n and is given by

x0(s) = A cosms + B sinms, (13)

y0(s) = C cosns + D sinns, (14)

with σ = σ0 = 1/m. Since the system described by Equations (8) and (9) is auto-
nomous, the substitution oft + constant fort in a solution gives a solution. This
invariance can be used, by a proper ‘choice of the time origin’, to set to zero one of
the coefficient or, in other words, to choose the phase of thex-component of motion,
without loss of generality. We put

B = 0, (15)

and we assume, in the following, thatA 6= 0 (the motion along an axis has been
studied in paper I). When proceeding to increasing orders, and imposing the vanishing
of all secular terms, we obtain equations involving the constantsA, C, D and the
xk(t), yk(t) and σk for k = 1, 2, . . . . However, these equations become rapidly
inextricable.



ANALYTICAL PLANAR GALACTIC POTENTIALS 207

Happily, the following trick enabled us to keep tractable equations. Instead of
looking for a periodic solution for a given value of the parameterq, we determineq
as a function of the coefficientsA, C andD. In fact, only two of these coefficients
are independent, as it is shown below. Let us denote thema andb. At the end of the
computation, we obtainq andE (the energy) expressed in terms ofa andb. These
expressions can be inverted, numerically if necessary, to givea andb in terms ofq
andE.

As the other unknowns of the problem,q is written as a power series ofε:

q = q0 + q1ε + q2ε
2 + · · · . (16)

4. Condition Equations

We know the order zero solution (Equations (13)–(15)). The solutions at increasing
orders are obtained through a recurrence that we sketch below. Let us suppose that
we have obtained a solution up to orderk − 1. The substitution of the power series
in the equations of motion gives

x ′′
k + m2xk = 2m3x0σk + Fk, (17)

y ′′
k + n2yk =

(
2n3

m
qk + 2mn2σk

)
y0 + Gk, (18)

whereFk andGk are finite trigonometric expressions ofs computed from the solution
up to orderk − 1 already obtained. As we are seeking a periodic solution, we must
avoid secular terms inxk andyk, that is, we must set to zero the coefficients of the terms
in cosms and sinms in the right hand side of Equation (17) and the coefficients of the
terms in cosns and sinns in the right hand side of Equation (18). These four algebraic
equations express, at each orderk, the conditions of periodicity of the solution and
are called equations of condition. They are linear inσk andqk but usually nonlinear
in A, C andD. Generally, only two of these four conditions are independent so that
they can be satisfied by a choice of the two parametersσk andqk. When the equations
of condition are satisfied, the solution of Equations (17) and (18) is unique except
that arbitrary terms in cosms and sinms can be added toxk and arbitrary terms in
cosns and sinns can be added toyk. The addition of these arbitrary terms would be
equivalent to a redefinition of coefficientsA, B, C andD introduced at order 0 and
can thus be ignored. So we can consider that the solution of orderk 6= 0 is unique
and thatxk does not contain terms in cosms and sinms and thatyk does not contain
terms in cosns and sinns.

However, at orderm+n−1, the equations of condition for periodic motion cannot
be solved with respect toσk andqk for arbitrary values ofA, C andD. The condition
of solvability imposes a relation between the coefficientsC andD. In other terms,
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it imposes the phase of they-component of motion. As we have already chosen the
phase of thex-component (Equation (15)), we can also say that this relation locks
the difference of phases between the two components of the motion. Similar phase
lockings are described by Presler and Broucke (1981a) and Davoust (1983). This
relation betweenC andD is given for each studied resonance case in the following
section. As an example, we give the details of the calculation leading to this relation
in the case of resonance 1 : 2, where it appears at order 2. In all studied cases,
the detailed calculation shows that this relation betweenC andD occurs at order
m + n − 1, but we are not able to explain in a simple and general way why this
relation appears at that particular order. For each resonance, this equation admits
several solutions corresponding to different families. These families depend on two
arbitrary constants,a andb, and are described in the following section.

5. Periodic Orbit Families

The series we have computed were truncated at an order depending on the family,
imposed by the limited memory available on the computer (of the order of 100 MB).
As it is well-known, the intermediate computations require much more computer
resource than the final result. For each family, the motion can be described by a
computer file, the size of which is of the order of 1 MB or slightly greater. For
families belonging to resonances 1 :1, 1 :2, 2 :3 and 3 :4, the series were computed
up to order 15, whereas for families belonging to resonances 3 :5 and 4 :5 we were
limited to order 10 (and even 9 for subfamily 4 : 5b). The series cannot be used
directly for numerical computations because they converge slower and slower as
the energy is increased and finally diverge. As in paper I, the transformation of the
power series into continued fractions allows us to extend significantly the domain of
convergence of our results. The program computing the coefficients of the continued
fractions from the coefficients of the power series has been written in FORTRAN.
We have used the analytical results to determine the domains of existence of different
families of periodic orbits (see below). These results were confirmed numerically, as
is explained at the end of this section.

5.1. resonance 1:1

The condition of solvability of the condition equations at order 1 imposes the fol-
lowing relation betweenC andD:

CD = 0. (19)

This gives two families that we label 1 : 1a and 1 : 1b. Of course, we can only give
the first few terms of the power series in the present paper (the files describing the
full series can be obtained upon request).
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5.1.1. Family1:1a
With A = a, C = b andD = 0, we obtain

q = 1, (20)

σ = 1 − 3ε

8
(a2 + b2) + 65ε2

256
(a2 + b2)2 + · · · , (21)

E = 1

2
(a2 + b2) − 9ε

32
(a2 + b2)2 + 1355ε2

6144
(a2 + b2)3 + · · · , (22)

x

a
= y

b
= coss − ε

32
(a2 + b2) cos 3s +

+ ε2

3072
(a2 + b2)2(57 cos 3s + 11 cos 5s) + · · · . (23)

Family 1:1a exists only for the particular case of an axisymmetric potential(q = 1)

and its orbits are rectilinear.

5.1.2. Family1:1b
With A = a, C = 0 andD = b, we obtain

q = 1 + ε

4
(a2 − b2) + ε2

64
(−7a4 + 4a2b2 + 3b4) + · · · , (24)

σ = 1 + ε

8
(−3a2 − b2) + ε2

256
(65a4 + 34a2b2 − 3b4) + · · · , (25)

E = 1

2
(a2 + b2) + ε

32
(−9a4 − 14a2b2 − b4) +

+ ε2

6144
(1355a6 + 2517a4b2 + 309a2b4 − 85b6) + · · · , (26)

x = a coss + ε

32
(−a3 + ab2) cos 3s +

+ ε2

3072
[(57a5 − 54a3b2 − 3ab4) cos 3s +

+(11a5 − 22a3b2 + 11ab4) cos 5s] + · · · , (27)

y = b sins + ε

32
(−a2b + b3) sin 3s +

+ ε2

3072
[(51a4b − 42a2b3 − 9b5) sin 3s +

+(11a4b − 22a2b3 + 11b5) sin 5s] + · · · . (28)

The members of this family are loop orbits. A change in the sign ofa orb reverses
the direction of motion on the same orbit. The limits of the domain of existence of
this family are obtained by settinga = 0 or b = 0 in the above expressions. When
a = 0, periodic loop orbits degenerate intoy-axial orbits. In the(q, E)-plane these
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Figure 2.Limits of existence of the families of periodic orbits computed analytically (solid line)
and numerically (dashed line).

orbits lie along the curve labeledy11b in Figure 2, given by

q = 1 − ε

4
b2 + 3ε2

64
b4 + · · · , (29)

E = 1

2
b2 − ε

32
b4 − 85ε2

6144
b6 + · · · . (30)

The elimination ofb between these equations gives

q = 1 − ε

2
E + ε2

8
E2 + · · · . (31)

This curve is also the limit of stability of they-axial orbits, as shown in paper I.
To compare with the results given in this paper, the following remarks must be
taken into account. Figure 6(a) of paper I uses the amplitude instead of the energy.
The expression ofqb1 given by Equation (59) relates to anx-orbit; for a y-orbit,
the appropriate expression is 1/qb1. Whenε, the square of the amplitude, in these
expressions is substituted for the energy (Equation (55) of paper I), we recover the
expression given by Equation (31).

If we setb = 0, we obtain orbits degenerated along thex-axis, with values of
q > 1.

q ′ = 1 + ε

2
E + ε2

8
E2 + · · · (32)
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q ′ describes the same limit asq when we exchange the roles ofx and y axes.
Consequentlyq ′ = 1/q; q ′ can be compared more easily toqb1 of paper I.

5.2. resonance 1:2

As an example, we give below a detailed exposition of the application of the
Lindstedt’s method to the resonance 1:2, up to second order, where the equations of
condition impose a relation between the coefficientsC andD.

As explained in Section 3, at order 0, the solution is given by

σ0 = 1, (33)

q0 = 1
2, (34)

x0 = A coss, (35)

y0 = C cos 2s + D sin 2s. (36)

Now, in Equations (8) and (9), we substitute the expressions given by Equa-
tions (10)–(12) and (16) forx(t), y(t), σ andq. At first order inε, we obtain

x ′′
1 + x1 = 1

4(8Aσ1 + 8AD2 + 8AC2 + 3A3) coss +
+1

4(−4AD2 + 4AC2 + A3) cos 3s + 2ACD sin 3s +
+(AC2 − AD2) cos 5s + 2ACD sin 5s, (37)

y ′′
1 + 4y1 = A2C + (8Cσ1 + 16Cq1 + 12CD2 + 12C3 + 2A2C) cos 2s +

+(8Dσ1 + 16Dq1 + 12D3 + 12C2D + 2A2D) sin 2s +
+A2C cos 4s + A2D sin 4s + (−12CD2 + 4C3) cos 6s +
+(−4D3 + 12C2D) sin 6s. (38)

In order to avoid secular terms in the first order solution, we must set to zero
the coefficients of coss and sins in the right hand member of the first equation
and the coefficients of cos 2s and sin 2s in the right hand member of the second
equation. The coefficient of sins is already zero and we are left with three equations
of condition.

8Aσ1 + 8AD2 + 8AC2 + 3A3 = 0, (39)

8Cσ1 + 16Cq1 + 12CD2 + 12C3 + 2A2C = 0, (40)

8Dσ1 + 16Dq1 + 12D3 + 12C2D + 2A2D = 0. (41)

Two of these equations are independent and give usσ1 andq1:

σ1 = −3
8A

2 − C2 − D2, (42)

q1 = 1
16A

2 − 1
4C

2 − 1
4D

2. (43)
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Equations (37) and (38) now admit the periodic solution

x1 = 1
32(4AD2 − 4AC2 − A3) cos 3s − 1

4ACD sin 3s +
+ 1

24(AD2 − AC2) cos 5s − 1
12ACD sin 5s, (44)

y1 = 1
4A

2C − 1
12A

2C cos 4s − 1
12A

2D sin 4s +
+1

8(3CD2 − C3) cos 6s + 1
8(D

3 − 3C2D) sin 6s. (45)

At order 2, the same process gives us the following differential equations:

x ′′
2 + x2 = 1

384(768Aσ2 − 1216AD4 − 2432AC2D2 − 1216AC4 −
− 880A3D2 − 976A3C2 − 195A5) coss − 1

4A
3CD sins +

+ 1
384(480AD4 − 480AC4 + 176A3D2 −

− 304A3C2 − 57A5) cos 3s +
+ 1

4(−10ACD3 − 10AC3D − 5A3CD) sin 3s +
+ 1

384(480AD4 − 480AC4 + 496A3D2 −
− 496A3C2 − 33A5) cos 5s +
+ 1

12(−30ACD3 − 30AC3D − 31A3CD) sin 5s +
+ 1

48(−66AD4 + 396AC2D2 − 66AC4 +
+ 35A3D2 − 35A3C2) cos 7s +
+ 1

24(132ACD3 − 132AC3D − 35A3CD) sin 7s +
+ 1

24(−31AD4 + 186AC2D2 − 31AC4) cos 9s +
+ 1

6(31ACD3 − 31AC3D) sin 9s, (46)

y ′′
2 + 4y2 = 1

16(−20A2CD2 − 20A2C3 − 9A4C) + 1
48(384Cσ2 +

+ 768Cq2 − 792CD4 − 1584C3D2 − 792C5 −
− 568A2CD2 − 568A2C3 − 73A4C) cos 2s +
+ 1

48(384Dσ2 + 768Dq2 − 792D5 − 1584C2D3 −
− 792C4D − 568A2D3 − 568A2C2D − 67A4D) sin 2s +
+ 1

48(−142A2CD2 − 22A2C3 − 27A4C) cos 4s +
+ 1

48(−82A2D3 + 38A2C2D − 27A4D) sin 4s +
+ 1

48(792CD4 + 528C3D2 − 264C5 + 480A2CD2 −
− 160A2C3 − 19A4C) cos 6s + 1

48(264D5 − 528C2D3 −
− 792C4D + 160A2D3 − 480A2C2D − 19A4D) sin 6s +
+ 1

24(231A2CD2 − 77A2C3) cos 8s +
+ 1

24(77A2D3 − 231A2C2D) sin 8s +
+ 1

2(−55CD4 + 110C3D2 − 11C5) cos 10s +
+ 1

2(−11D5 + 110C2D3 − 55C4D) sin 10s. (47)
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The equations of condition read

768Aσ2 − 1216AD4 − 2432AC2D2 − 1216AC4 −
− 880A3D2 − 976A3C2 − 195A5 = 0, (48)

A3CD = 0, (49)

384Cσ2 + 768Cq2 − 792CD4 − 1584C3D2 − 792C5 −
− 568A2CD2 − 568A2C3 − 73A4C = 0, (50)

384Dσ2 + 768Dq2 − 792D5 − 1584C2D3 − 792C4D −
− 568A2D3 − 568A2C2D − 67A4D = 0. (51)

These condition equations cannot be solved with respect toσ2 and q2 for an
arbitrary choice of the coefficientsA, C andD. As we exclude the possibilityA = 0
(axial movements, already studied in paper I), the condition of solvability reads

CD = 0. (52)

This gives two families that we label 1:2a and 1:2b.

5.2.1. Family1:2a
With C = b andD = 0, we obtain

q = 1

2
+ ε

16
(a2 − 4b2) + ε2

1536
(−49a4 + 160a2b2 + 368b4) + · · · , (53)

σ = 1 + ε

8
(−3a2 − 8b2) + ε2

768
(195a4 + 976a2b2 + 1216b4) + · · · , (54)

E = 1

2
(a2 + 4b2) + ε

32
(−9a4 − 64a2b2 − 80b4) + ε2

18432
(4065a6 +

+ 40744a4b2 + 100000a2b4 + 86592b6) + · · · , (55)

x = a coss + ε

96
[(−3a3 − 12ab2) cos 3s − 4ab2 cos 5s] +

+ ε2

46080
[(855a5 + 4560a3b2 + 7200ab4) cos 3s +

+ (165a5 + 2480a3b2 + 2400ab4) cos 5s +
+ (700a3b2 + 1320ab4) cos 7s + 744ab4 cos 9s] + · · · , (56)

y = b cos 2s + ε

24
[6a2b − 2a2b cos 4s − 3b3 cos 6s] +

+ ε2

23040
[−3240a4b − 7200a2b3 + (1080a4b + 880a2b3) cos 4s +

+ (285a4b + 2400a2b3 + 3960b5) cos 6s +
+ 1232a2b3 cos 8s + 1320b5 cos 10s] + · · · . (57)
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Figure 3.Limits of existence of families of periodic orbits in the neighbourhood ofq = 0.62.

These equations describe periodic banana orbits. A change of sign ofb gives an orbit
which is symmetric to the original one with respect to thex-axis, whereas a change
of sign ofa leaves it invariant. The limits of the domain of existence of the family are
obtained by settinga = 0 orb = 0 in the above expressions. Proceeding in the same
manner as for the loop orbits, we obtain, in the(q, E)-plane the boundary where
banana orbits degenerate intox-axial orbits (curvex12a in Figure 2)

q = 1

2
+ ε

8
E + 5ε2

384
E2 + · · · (58)

and the boundary where they degenerate intoy-axial orbits (curvey12 in Figure 2)

q = 1

2
− ε

8
E − 7ε2

384
E2 + · · · (59)

Curvex12a is also a limit of stability forx-axial movement, as it is shown in
paper I (curvea2 of Figures 3(a) and 6(a)). When expressed in terms ofE, the
expression ofqa2 (Equation (60) of paper I) reduces to our Equation (58).
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5.2.2. Family1:2b
With C = 0 andD = b, we obtain

q = 1

2
+ ε

16
(a2 − 4b2) + ε2

1536
(−61a4 + 256a2b2 + 368b4) + · · · , (60)

σ = 1 + ε

8
(−3a2 − 8b2) + ε2

768
(195a4 + 880a2b2 + 1216b4) + · · · , (61)

E = 1

2
(a2 + 4b2) + ε

32
(−9a4 − 64a2b2 − 80b4) + ε2

18432
(4065a6 +

+ 38296a4b2 + 90784a2b4 + 86592b6) + · · · , (62)

x = a coss + ε

96
[(−3a3 + 12ab2) cos 3s + 4ab2 cos 5s] +

+ ε2

46080
[(855a5 − 2640a3b2 − 7200ab4) cos 3s +

+ (165a5 − 2480a3b2 − 2400ab4) cos 5s +
+ (−700a3b2 + 1320ab4) cos 7s + 744ab4 cos 9s] + · · · , (63)

y = b sin 2s + ε

24
(−2a2b sin 4s + 3b3 sin 6s) + ε2

23040
[(1080a4b +

+ 3280a2b3) sin 4s + (285a4b − 2400a2b3 − 3960b5) sin 6s −
− 1232a2b3 sin 8s + 1320b5 sin 10s] + · · · . (64)

These equations describe periodic antibanana orbits. A change of sign ofb reverses
the direction of motion on the same trajectory, whereas a change of sign ofa leaves it
invariant. The limits of the domain of existence of the family are obtained by setting
a = 0 or b = 0 in the above expressions. In the(q, E)-plane the boundary where
antibanana orbits degenerate intox-axial orbits (curvex12b in Figure 2) is given by

q = 1

2
+ ε

8
E − 7ε2

384
E2 + · · · . (65)

They degenerate intoy-axial orbits along the same boundary as the orbits of family
1:2a (curvey12 in Figure 2).

Curvex12b is also a limit of stability forx-axial movement, as it is shown in
paper I (curveb2 of Figures 3(a) and 6(a)). When expressed in terms ofE, the
expression ofqb2 (Equation (61) of paper I) reduces to our Equation (65). For a
given value ofq, curvesx12a andx12b delimit a range of energy in whichx-axial
movements are unstable.

5.3. resonance 2:3

To solve the equations of condition at order 4, we must impose the relation

CD(D2 − C2) = 0. (66)
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At first sight, this equation has four families of solutions:

(a1) C 6= 0, D = 0,

(a2) C = 0, D 6= 0,

(b1) D = C,

(b2) D = −C.

In fact, it appears that the change of variables

s = s ′ + 1
2π (67)

transforms a solution of type(a1) into a solution of type(a2) so that there is no need
to distinguish between the two types. The same remark holds for the types(b1) and
(b2). So, we have only two families that we label 2 :3a and 2:3b.

5.3.1. Family2:3a
With C = b andD = 0, we obtain

q = 2

3
+ ε

48
(4a2 − 9b2) +

+ ε2

30720
(−1616a4 + 4464a2b2 + 2349b4) + · · · , (68)

σ = 1

2
+ ε

32
(−6a2 − 9b2) +

+ ε2

5120
(650a4 + 1656a2b2 + 1377b4) + · · · , (69)

E = 1

8
(4a2 + 9b2) + ε

512
(−144a4 − 576a2b2 − 405b4) +

+ ε2

9830400
(2168000a6 + 11675232a4b2 +

+ 15887232a2b4 + 9035955b6) + · · · , (70)

x = a cos 2s + ε

160
(−30ab2 cos 4s − 5a3 cos 6s − 6ab2 cos 8s) +

+ ε2

8601600
[−1058400a3b2 + (1189440a3b2 +

+ 1134000ab4) cos 4s + (159600a5 + 30240a3b2) cos 6s +
+ (455616a3b2 + 226800ab4) cos 8s +
+ (30800a5 + 179550ab4) cos 10s + 95904a3b2 cos 12s +
+ 74655ab4 cos 14s] + · · · , (71)
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y = b cos 3s + ε

640
(180a2b coss − 36a2b cos 7s − 45b3 cos 9s) +

+ ε2

2867200
[(−453600a4b − 438480a2b3) coss +

+ (12600a4b − 132300a2b3) cos 5s +
+ (90720a4b + 39312a2b3) cos 7s +
+ (191520a2b3 + 155925b5) cos 9s + 21240a4b cos 11s +
+ 66528a2b3 cos 13s + 51975b5 cos 15s] + · · · . (72)

These equations describe periodic fish orbits. A change of sign ofa gives an orbit
symmetric to the original one with respect to they-axis, whereas a change of sign ofb

leaves it invariant. The limits of the domain of existence of the family are obtained by
settinga = 0 orb = 0 in the above expressions. Proceeding as above, we obtain, in
the(q, E)-plane the boundary where fish orbits degenerate intox-axial orbits (curve
x23 in Figure 2)

q = 2

3
+ ε

6
E − 11ε2

480
E2 + · · · (73)

and the boundary where they degenerate intoy-axial orbits (curvey23 in Figure 2)

q = 2

3
− ε

6
E − 7ε2

160
E2 + · · · . (74)

5.3.2. Family2:3b
With C = D = b/

√
2, we obtain expressions ofq, σ andE which coincide with the

corresponding expressions for family 2 :3a up to order 3;x andy are given by

x = a cos 2s + ε

160
(−30ab2 sin 4s − 5a3 cos 6s − 6ab2 sin 8s) +

+ ε2

8601600
[(1189440a3b2 + 1134000ab4) sin 4s +

+ (159600a5 + 30240a3b2) cos 6s + (455616a3b2 + 226800ab4) sin 8s +
+ (30800a5 − 179550ab4) cos 10s + 95904a3b2 sin 12s −
− 74655ab4 cos 14s] + · · · , (75)

y = b√
2
(cos 3s + sin 3s) + ε

640
√

2
[180a2b(coss − sins) − 36a2b(cos 7s +

+ sin 7s) + 45b3(cos 9s − sin 9s) + ε2

2867200
√

2
[(−453600a4b −
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− 438480a2b3)(coss − sins) + (12600a4b + 132300a2b3)(cos 5s −
− sin 5s) + (90720a4b + 39312a2b3)(cos 7s + sin 7s) +
+ (−191520a2b3 − 155925b5)(cos 9s − sin 9s) +
+ 21240a4b(cos 11s + sin 11s) − 66528a2b3(cos 13s − sin 13s) −
− 51975b5(cos 15s + sin 15s)] + · · · . (76)

These equations describe periodic antifish orbits. A change of sign ofa reverses the
direction of motion on the same trajectory, whereas a change of sign ofb leaves it
invariant. In the(q, E)-plane, they have the same domain of existence as fish orbits
and degenerate into axial orbits on the same boundaries.

5.4. resonance 3:4

At order 6, we obtain the relation

CD(C2 − 3D2)(3C2 − D2) = 0. (77)

This equation admits six types of solutions:

(a1) D = 0,

(a2) D = −√
3C,

(a3) D = √
3C,

(b1) C = 0,

(a2) C = √
3D,

(a3) C = −√
3D.

The transformations

s = s ′ + 1
3π and s = s ′′ + 2

3π (78)

allow us to group them into two families.

5.4.1. Family3:4a
With C = b andD = 0, we obtain

q = 3

4
+ ε

96
(9a2 − 16b2) +

+ ε2

7168
(−465a4 + 1216a2b2 + 256b4) + · · · , (79)

σ = 1

3
+ ε

216
(−27a2 − 32b2) +

+ ε2

145152
(12285a4 + 23424a2b2 + 17408b4) + · · · , (80)
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E = 1

18
(9a2 + 16b2) + ε

2592
(−729a4 − 2304a2b2 − 1280b4) +

+ ε2

219469824
(48401955a6 + 206098560a4b2 + 220662144a2b4 +

+ 108867584b6) + · · · , (81)

x = a cos 3s + ε

224
(−56ab2 cos 5s − 7a3 cos 9s − 8ab2 cos 11s) +

+ ε2

24837120
[−3557400a3b2 coss + (5063520a3b2 +

+ 3449600ab4) cos 5s + (460845a5 − 98560a3b2) cos 9s +
+ (1399200a3b2 + 492800ab4) cos 11s + 500192ab4 cos 13s +
+ 88935a5 cos 15s + 243672a3b2 cos 17s +
+ 166880ab4 cos 19s] + · · · , (82)

y = b cos 4s + ε

126
(42a2b cos 2s − 6a2b cos 10s − 7b3 cos 12s) +

+ ε2

41912640
[(−7858620a4b − 4324320a2b3) cos 2s −

− 2794176a2b3 cos 6s − 72765a4b cos 8s + (1122660a4b −
− 237600a2b3) cos 10s + (2494800a2b3 + 1422960b5) cos 12s +
+ 251559a4b cos 16s + 691200a2b3 cos 18s +
+ 474320b5 cos 20s] + · · · . (83)

These equations describe periodic pretzel orbits. A change of sign ofb gives a
trajectory symmetric to the original one with respect to thex-axis, whereas a change
of sign ofa leaves it invariant. The domain of existence of the family in the(q, E)-
plane is delimited by the curvesx34 where they degenerate intox-axial orbits and
y34 where they degenerate intoy-axial orbits (Figure 2). Curvex34 is given by

q = 3

4
+ 3ε

16
E − 87ε2

1792
E2 + · · · (84)

and curvey34 by

q = 3

4
− 3ε

16
E − 129ε2

1792
E2 + · · · . (85)
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5.4.2. Family3:4b
With C = 0 andD = b, we obtain forq, σ andE expressions which coincide with
the corresponding expressions for family 3:4a up to order 5;x andy are given by

x = a cos 3s + ε

224
(56ab2 cos 5s − 7a3 cos 9s + 8ab2 cos 11s) +

+ ε2

24837120
[3557400a3b2 coss + (−5063520a3b2 −

− 3449600ab4) cos 5s + (460845a5 − 98560a3b2) cos 9s + (86)

+ (−1399200a3b2 − 492800ab4) cos 11s + 500192ab4 cos 13s +
+ 88935a5 cos 15s − 243672a3b2 cos 17s + 166880ab4 cos 19s] + · · · ,

y = b sin 4s + ε

126
(−42a2b sin 2s − 6a2b sin 10s + 7b3 sin 12s) +

+ ε2

41912640
[(7858620a4b + 4324320a2b3) sin 2s +

+ 2794176a2b3 sin 6s + 72765a4b sin 8s + (1122660a4b − (87)

− 237600a2b3) sin 10s + (−2494800a2b3 − 1422960b5) sin 12s +
+ 251559a4b sin 16s − 691200a2b3 sin 18s + 474320b5 sin 20s] + · · · .

These equations describe periodic antipretzel orbits. A change of sign ofb reverses
the direction of motion on the same trajectory, whereas a change of sign ofa leaves it
invariant. In the(q, E)-plane, they have the same domain of existence as the pretzel
orbits and degenerate into axial orbits on the same boundaries.

5.5. resonance 3:5

We have obtained, at order 7, the same relation betweenC andD as in the case of
resonance 3 : 4. The six types of solutions can be grouped in the same manner into
two families.

5.5.1. Family3:5a
With C = b andD = 0, we obtain

q = 3

5
+ ε

120
(9a2 − 25b2) + ε2

5120
(−231a4 + 700a2b2 + 625b4) + · · · ,

(88)

σ = 1

3
+ ε

216
(−27a2 − 50b2) +

+ ε2

82944
(7020a4 + 22650a2b2 + 21875b4) + · · · , (89)
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E = 1

18
(9a2 + 25b2) + ε

2592
(−729a4 − 3600a2b2 − 3125b4) +

+ ε2

71663616
(15804720a6 + 105538275a4b2 + 177509475a2b4 +

+ 118250000b6) + · · · (90)

x = a cos 3s + ε

128
(−20ab2 cos 7s − 4a3 cos 9s − 5ab2 cos 13s) +

+ ε2

147603456
[−20660640a3b2 coss + (15915900a3b2 +

+ 20020000ab4) cos 7s + (2738736a5 + 1401400a3b2) cos 9s +
+ (7732725a3b2 + 5005000ab4) cos 13s + 528528a5 cos 15s +
+ 3374800ab4 cos 17s + 1844115a3b2 cos 19s +
+ 1609300ab4 cos 23s] + · · · , (91)

y = b cos 5s + ε

1152
(300a2b coss − 75a2b cos 11s − 100b3 cos 15s) +

+ ε2

3985293312
[(−583783200a4b − 797296500a2b3) coss +

+ 54054000a4b cos 7s − 169884000a2b3 cos 9s + (145945800a4b +
+138513375a2b3) cos 11s + (308107800a2b3 +
+ 330330000b5) cos 15s + 35626500a4b cos 17s +
+ 125519625a2b3 cos 21s + 110110000b5 cos 25s] + · · · . (92)

A change of sign ofa or b gives a trajectory which is symmetric to the original one
with respect to thex-axis or to they-axis (both symmetry operations applied to this
orbit give the same result). The domain of existence of these orbits in the(q, E)-
plane is delimited by the curvesx35 where they degenerate intox-axial orbits and
y35 where they degenerate intoy-axial orbits (Figure 2). Curvex35 is given by

q = 3

5
+ 3ε

20
E − 3ε2

256
E2 + · · · (93)

and curvey35 by

q = 3

5
− 3ε

20
E − 39ε2

1280
E2 + · · · . (94)
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5.5.2. Family3:5b
With C = 0 andD = b, we obtain forq, σ andE expressions which coincide with
the corresponding expressions for family 3:5a up to order 6;x andy are given by

x = a cos 3s + ε

128
(20ab2 cos 7s − 4a3 cos 9s + 5ab2 cos 13s) +

+ ε2

147603456
[20660640a3b2 coss + (−15915900a3b2 +

− 20020000ab4) cos 7s + (2738736a5 + 1401400a3b2) cos 9s +
+ (−7732725a3b2 − 5005000ab4) cos 13s + 528528a5 cos 15s +
+ 3374800ab4 cos 17s − 1844115a3b2 cos 19s +
+ 1609300ab4 cos 23s] + · · · , (95)

y = b sin 5s + ε

1152
(−300a2b sins − 75a2b sin 11s + 100b3 sin 15s) +

+ ε2

3985293312
[(583783200a4b + 797296500a2b3) sins −

− 54054000a4b sin 7s + 169884000a2b3 sin 9s +
+ (145945800a4b + 138513375a2b3) sin 11s +
+ (−308107800a2b3 − 330330000b5) sin 15s +
+ 35626500a4b sin 17s − 125519625a2b3 sin 21s +
+ 110110000b5 sin 25s] + · · · . (96)

A change of sign ofa or b reverses the direction of motion on the same trajectory.
These orbits have the same domain of existence as those of family 3:5a and degenerate
into axial orbits on the same boundaries.

5.6. resonance 4:5

We have obtained, at order 8, the relation

CD(C − D)(C + D)(C2 − 2CD − D2)(C2 + 2CD − D2) = 0. (97)

It admits eight types of solutions:

(a1) D = 0,

(a2) C = 0,

(a3, a4) C = ±D,

(b1, b2) C = (1 ± √
2)D,

(b3, b4) C = (−1 ± √
2)D.



ANALYTICAL PLANAR GALACTIC POTENTIALS 223

The changes of variables

s = s ′ + 1
4kπ, k = 1, 2, 3 (98)

show that we can group them into two families.

5.6.1. Family4:5a
With C = b andD = 0, we obtain

q = 4

5
+ ε

160
(16a2 − 25b2) +

+ ε2

737280
(−55552a4 + 145600a2b2 + 10625b4) + · · · , (99)

σ = 1

4
+ ε

256
(−24a2 − 25b2) +

+ 5ε

294912
(3744a4 + 5920a2b2 + 4375b4) + · · · , (100)

E = 1

32
(16a2 + 25b2) + ε

8192
(−2304a4 − 6400a2b2 − 3125b4) +

+ 5ε2

679477248
(29970432a6 + 113260160a4b2 + 106365440a2b4 +

+ 49753125b6) + · · · , (101)

x = a cos 4s + ε

288
(−90ab2 cos 6s − 9a3 cos 12s − 10ab2 cos 14s) +

+ ε2

120766464
[−22014720a3b2 cos 2s + (33415200a3b2 +

+ 18427500ab4) cos 6s + (2240784a5 − 1146600a3b2) cos 12s +
+ (7352800a3b2 + 2047500ab4) cos 14s + 2518425ab4 cos 16s +
+ 432432a5 cos 20s + 1104320a3b2 cos 22s +
+ 704925ab4 cos 24s] + · · · , (102)

y = b cos 5s + ε

4608
(1800a2b cos 3s − 200a2b cos 13s − 225b3 cos 15s) +

+ ε2

1932263424
[(−424569600a4b − 127764000a2b3) cos 3s −

− 189189000a2b3 cos 7s − 9828000a4b cos 11s + (47174400a4b −
− 32396000a2b3) cos 13s + (112694400a2b3 + 50675625b5) cos 15s +
+ 10332000a4b cos 21s + 26429000a2b3 cos 23s +
+ 16891875b5 cos 25s] + · · · . (103)
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A change of sign ofa gives a trajectory symmetric to the original one with respect
to the y-axis, whereas a change of sign ofb leaves it invariant. The domain of
existence of these orbits in the(q, E)-plane is delimited by the curvesx45 where
they degenerate intox-axial orbits andy45 where they degenerate intoy-axial orbits
(Figure 2). Curvex45 is given by

q = 4

5
+ ε

5
E − 11ε2

144
E2 + · · · (104)

and curvey45 by

q = 4

5
− ε

5
E − 73ε2

720
E2 + · · · . (105)

5.6.2. Family4:5b

With C =
√

2 + √
2b/2 andD = (

√
2 + √

2)(
√

2 − 1)b/2 we obtain forq, σ and
E expressions which coincide with the corresponding expressions for family 4 : 5a

up to order 7;x andy are given by

x = a cos 4s + ε

288
[−45

√
2ab2(cos 6s + sin 6s) − 9a3 cos 12s −

−5
√

2ab2(cos 14s + sin 14s)] + · · · , (106)

y =
√

2 + √
2

2
[b cos 5s + (

√
2 − 1)b sin 5s] +

+ 25
√

2 + √
2ε

9216
{72a2b[cos 3s − (

√
2 − 1) sin 3s] −

− 8a2b[cos 13s + (
√

2 − 1) sin 13s] −
− 9b3[(

√
2 − 1) cos 15s + sin 15s]} + · · · . (107)

A change of sign ofa reverses the direction of motion on the same trajectory, whereas
a change of sign ofb leaves it invariant. These orbits have the same domain of
existence as those of family 4 : 5a and degenerate into axial orbits on the same
boundaries.

5.7. numerical determination of the boundaries

In order to assess the validity of the analytical determination of the domains of
existence of different families of periodic orbits, we have recomputed the boundaries
with a numerical method. We use the technique of Poincaré sections. On thex-
boundary of them : n family domain, the periodic orbits of the family degenerate
into x-axial orbits. These orbits and their neighbours are best studied in the plane of
sectionx = 0. LetT be the Poincaré application andT ′ its derivative at the origin
(see paper I). At the point where anm : n periodic orbit springs from anx-axial
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orbit, T m, themth iteration of the Poincaré application, is marginally stable. So, on
thex-boundary, we have

tr T ′m = ±2 or trT ′ = 2 cos
kπ

m
, k = 0, 1, . . . . (108)

The precise value ofk can be deduced from the case of small amplitude. In this case,
x andy are given by expressions (13) and (14) andσ = 1/m. Without restricting the
generality, we can suppose thatA > 0 andB = 0. We obtain points of section (x = 0
andẋ > 0) for s = (2k + 3

2)π/m. For two consecutive sections, corresponding to
s0 = 3π/2m ands1 = 7π/2m, we have

y0 = C cos
3nπ

2m
+ D sin

3nπ

2m
, (109)

ẏ0 = − n

m
C sin

3nπ

2m
+ n

m
D cos

3nπ

2m
, (110)

y1 = C cos
7nπ

2m
+ D sin

7nπ

2m
, (111)

ẏ1 = − n

m
C sin

7nπ

2m
+ n

m
D cos

7nπ

2m
. (112)

In this approximation the Poincaré application is linear and can be written

y1 = y0 cos
2nπ

m
+ ẏ0

m

n
sin

2nπ

m
, (113)

ẏ1 = −y0
n

m
sin

2nπ

m
+ ẏ0 cos

2nπ

m
. (114)

Thex-boundary of them :n family is thus determined by the condition

tr T ′ = 2 cos
2nπ

m
. (115)

This condition was used in our numerical computations to determine thex-boundaries.
They-boundaries can be characterized in a similar manner. The plane of section

y = 0 must be used to study orbits neary-axial orbits.T n is marginally stable on the
boundary, so that

tr T ′ = 2 cos
kπ

n
, k = 0, 1, . . . . (116)

The consideration of orbits of small amplitude can give us the exact value ofk. We
finally obtain

tr T ′ = 2 cos
2mπ

n
. (117)

This condition was used to compute numerically they-boundaries.
The results of the analytical and the numerical computations can be compared

in Figure 2. The analytical computation clearly lacks accuracy for they34 andy45
boundaries and a small discrepancy is barely visible for thex45 boundary.
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5.8. stability

We have not systematically investigated the stability of the above families of peri-
odic orbits. We have only determined the stability of the orbits represented in the
bifurcation diagrams of the next section.

6. Relations with the Stability of Axial Orbits, Bifurcation Diagrams

The synthetic view of different families offered by Figure 2 helps us to understand the
aspect of the bifurcation diagrams showing the families we have described originating
from axial orbits. As an example, let us takeq = 0.62. Figure 3 shows an enlargement
of Figure 2 in the vicinity ofq = 0.62.

Consider, first, the periodic orbits stemming from thex-axial orbit. When we
follow the lineq = 0.62, starting fromE = 0, we cross successively thex-boundaries
of families 3 : 5, 1 : 2a and 1 : 2b. Essentially the same information is displayed in
the bifurcation diagram (Figure 4), where the ordinateymax is the maximum value
of |y| reached by the orbit. This bifurcation diagram and the next one have been
computed by entirely numerical methods and show the stability of the orbits.

For the sameq value, starting fromE = 0, we cross successively they-boundaries
of families 2 : 3, 3 : 4, 4 : 5 and 1 : 1b. These crossings translate into the appearance

Figure 4.Bifurcation diagram showing families of periodic orbits originating from thex-axial orbit
(solid line for stable orbits, dashed line for unstable ones).
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Figure 5.Bifurcation diagram showing families of periodic orbits originating from they-axial orbit
(solid line for stable orbits, dashed line for unstable ones).

of the corresponding families in the bifurcation diagram (Figure 5), where the ordinate
xmax gives the maximum value of|x| reached by the orbit.

7. Conclusion

We have demonstrated that analytical techniques based on the Lindstedt method were
suitable for a quantitative study of periodic orbits. The present results were obtained in
a particular potential, but the method can be used with any regular analytical potential.
The algorithms we have described give the law of motion on the periodic orbits of
different families up to an arbitrary order. The effective order of the series is limited
only by the available computing power. The computations are rather cumbersome
but they provide a complete description of the motion.

In this work, these laws of motion have been used to determine the domains of
existence of different families of periodic orbits with a fairly good accuracy.
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