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Abstract. We study the regular families of periodic orbits in an analytical planar galactic potential,
using the method of Lindstedt. We obtain analytical expressions describing these orbits, validity of
which is not limited to small amplitudes. We can delimit, in the space of the parameters, the domain
of existence of each family of orbits.
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1. Introduction

Itis well-known that the determination of periodic orbits is the first step in the study of
adynamical system. Such aninvestigation has been carried out by Davoust (1983) for
afamily of three-dimensional galactic potentials near resonances, using the method of
Lindstedt. The periodic solutions of the equations of motion were formally written as
power series of a parametefwhich is set equal to 1 at the end of the calculations).
Setting equal to zero all terms which would give rise to secular terms, Davoust
obtained equations of condition relating the phases and amplitudes of the components
of motion and determined the solutions up to the first order. iHe was able to
describe qualitatively the families of regular periodic orbits at and near resonances
and his analytical solutions provided sufficiently accurate initial conditions to start
an efficient numerical search.

Of course, the use of the Lindstedt’s method is not limited to the first order, but the
complexity of the algebra increases dramatically with the order of the computation.
In a previous paper (Scuflaire, 1995, paper | in what follows) we used this method to
study axial motions in a logarithmic potential. The use of an algebraic programming
system (REDUCE) allowed us to obtain solutions in the form of power series of
the amplitudez of the motion (total energ¥ can be used instead aj up to high
orders (typically between 15 and 20). The transformation into continued fractions
gave rational expressions usable far outside the domain of convergence of the power
series. In a second step, the study of the stability of axial orbits provided boundaries
in the plane of the parameters for the loop and banana orbits resulting from the loss
of the stability of axial orbits.
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The purpose of the presentwork is to extend the method to the direct determination
of the regular two-dimensional periodic orbits up to high orders.

2. Equations of Motion

We use the two-dimensional logarithmic potential (Binney and Tremaine, 1987):

1, 2, .2 y?
V(x,y)zévoln R+ x +? , QD
whereg < 1 defines the ellipticity of the equipotential curvé,is the core radius
andug the circular velocity at large distance from the center wien 1. The motion

in any other analytical potential regular at the origin would be studied in the same
manner. Taking®. as the unit of length anfl;/vg as the unit of time, the expression

of the potential simplifies to

1 2 y?
Vi, y)=5In{1+x°+ = |. (2)
2 q
The equations of motion read

X

S S 3
x+l+x2+y2/q2 )

y _0
q?(1+ x%+ y2/q?)

y+ 4)

To understand the origin of different families of periodic orbits, it may be useful
to recall that for infinitely small amplitude, the motion obeys the linear equations:

i4+x=0, (%)
. y
q

The angular frequencies ofandy components of motion are, respectivety,= 1
andoy, = 1/¢q > o,. The motion is periodic only i is rational,q = m/n where

m andn are relatively prime withn < n. In this case the angular frequency of the
movement iss = 2r/period = o,/m = o,/n = 1/m. In a period, the particle
performsm oscillations in thex direction andk: oscillations in they direction. We

use the notatiom: : n to describe the family of periodic orbits originating from this
resonance. For motions of finite amplitude, the condition of existence of periodic
orbits of typem : n is not so demanding, has only to belong to a neighbourhood of
m/n, whose size increases with increasing endtgyn Section 5, we establish the
precise limits of the domains of existence of different families of periodic solutions
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Figure 1.Schematic shapes of periodic orbits belonging to resonances 1:2,2:3and 3 : 4.

in the (¢, E)-plane. For now, let us just say that the widtly of the g-domain of
existence of a periodic orbit of type : n is given by

m
Ag~ —E 7
a5 (7)

for small values of the energy. A similar estimatey( o< E) for a different potential
has been obtained by Contopoulos (1965, Equation 137) wheggand E must be
compared with his/A/B andh.

The values of; lower than }2 are of no interest for stellar dynamics, so in the
following sections, we limit our study to the low order resonances 1:1,1:2,2:3,
3:4,3:5and 4:5. Figure 1 shows schematically the shapes of the periodic orbits
belonging to a few of these resonances and the names given to the families of orbits
parented by these periodic orbits (Miralda-Eseaad Schwarzschild, 1989).
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3. Method of Solution

The use of the Lindstedt’s method is well-known in celestial mechanics and described
in a number of textbooks (see, e.g. Nayfeh, 1973 or Hayashi, 1985). It has been used
and described by Presler and Broucke (1981a,b) and Davoust (1983) to determine
periodic orbit families in galactic potentials. The equations of motion are rewritten
as

(¢ + €(g?x® + y9)]i + ¢%x =0, (8)
(g% +e(@®x*+y)]i+y =0, 9)

where a parameterhas been inserted in front of the nonlinear terms. At the end of
the calculation we will set = 1. However, this parameter enables us to write the
solutions as power series and to compute their terms iteratively:

x(1) = xo(t) + exa(t) + €2xa(1) + - -, (10)

V() = yot) + eya(t) + €%ya(1) + - - . (11)
The angular frequency of the motion is also written as a power series of

0 =00+ 016 + 02€>+ -+ . (12)

To simplify the notations, the variable = ot will be used instead of and the
derivation with respect to will be denoted by the prime symbof! = d f/ds.

At order 0, we recover the linear case, the solution corresponding ta the
resonance exists fgr = go = m/n and is given by

xo(s) = Acosms + Bsinms, (13)
yo(s) = C cosns + D sinns, (24)

with o = 09 = 1/m. Since the system described by Equations (8) and (9) is auto-
nomous, the substitution of+ constant forr in a solution gives a solution. This
invariance can be used, by a proper ‘choice of the time origin’, to set to zero one of
the coefficient or, in other words, to choose the phase of {b@mponent of motion,
without loss of generality. We put

B =0, (15)

and we assume, in the following, that # 0 (the motion along an axis has been
studied in paper ). When proceeding to increasing orders, and imposing the vanishing
of all secular terms, we obtain equations involving the constants, D and the

x (1), () andoy for k = 1,2,.... However, these equations become rapidly
inextricable.
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Happily, the following trick enabled us to keep tractable equations. Instead of
looking for a periodic solution for a given value of the parametere determinegy
as a function of the coefficient$, C and D. In fact, only two of these coefficients
are independent, as it is shown below. Let us denote thandb. At the end of the
computation, we obtaip and E (the energy) expressed in termsaoéndb. These
expressions can be inverted, numerically if necessary, toagamb in terms ofg
andE.

As the other unknowns of the problegis written as a power series of

g =qo+ qie + qae® + - - - . (16)

4. Condition Equations

We know the order zero solution (Equations (13)—(15)). The solutions at increasing
orders are obtained through a recurrence that we sketch below. Let us suppose that
we have obtained a solution up to order 1. The substitution of the power series

in the equations of motion gives

x; + m?x, = 2m>xo0y + Fi, (17)

y 2n3
Ve + ny = (?% + Zmnzak) Yo + Gy, (18)

whereF;, andG, are finite trigonometric expressionssafomputed from the solution
up to orderk — 1 already obtained. As we are seeking a periodic solution, we must
avoid secular terms i), andyy, thatis, we must setto zero the coefficients of the terms
in cosms and sirnms in the right hand side of Equation (17) and the coefficients of the
termsin coss and simus in the right hand side of Equation (18). These four algebraic
equations express, at each orfélethe conditions of periodicity of the solution and
are called equations of condition. They are lineasjirandg; but usually nonlinear
in A, C andD. Generally, only two of these four conditions are independent so that
they can be satisfied by a choice of the two parameteasdg, . When the equations
of condition are satisfied, the solution of Equations (17) and (18) is unique except
that arbitrary terms in coss and sinns can be added t®, and arbitrary terms in
cosns and sims can be added tg,. The addition of these arbitrary terms would be
equivalent to a redefinition of coefficients B, C and D introduced at order 0 and
can thus be ignored. So we can consider that the solution of breef is unique
and thatr;, does not contain terms in ces and sinns and thaty, does not contain
terms in coxs and sims.

However, at ordet: +n — 1, the equations of condition for periodic motion cannot
be solved with respect tg. andg; for arbitrary values ofA, C andD. The condition
of solvability imposes a relation between the coefficigntand D. In other terms,
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it imposes the phase of thecomponent of motion. As we have already chosen the
phase of thec-component (Equation (15)), we can also say that this relation locks
the difference of phases between the two components of the motion. Similar phase
lockings are described by Presler and Broucke (1981a) and Davoust (1983). This
relation betweert and D is given for each studied resonance case in the following
section. As an example, we give the details of the calculation leading to this relation
in the case of resonance 1 : 2, where it appears at order 2. In all studied cases,
the detailed calculation shows that this relation betw€esnd D occurs at order

m + n — 1, but we are not able to explain in a simple and general way why this
relation appears at that particular order. For each resonance, this equation admits
several solutions corresponding to different families. These families depend on two
arbitrary constants; andb, and are described in the following section.

5. Periodic Orbit Families

The series we have computed were truncated at an order depending on the family,
imposed by the limited memory available on the computer (of the order of 100 MB).
As it is well-known, the intermediate computations require much more computer
resource than the final result. For each family, the motion can be described by a
computer file, the size of which is of the order of 1 MB or slightly greater. For
families belonging to resonances 1:1, 1:2, 2:3 and 3:4, the series were computed
up to order 15, whereas for families belonging to resonances 3:5 and 4:5 we were
limited to order 10 (and even 9 for subfamily 44)5 The series cannot be used
directly for numerical computations because they converge slower and slower as
the energy is increased and finally diverge. As in paper I, the transformation of the
power series into continued fractions allows us to extend significantly the domain of
convergence of our results. The program computing the coefficients of the continued
fractions from the coefficients of the power series has been written in FORTRAN.
We have used the analytical results to determine the domains of existence of different
families of periodic orbits (see below). These results were confirmed numerically, as
is explained at the end of this section.

5.1. RESONANCE 1:1

The condition of solvability of the condition equations at order 1 imposes the fol-
lowing relation betweed andD:

CD =0. (19)

This gives two families that we label 1¢Jand 1: . Of course, we can only give
the first few terms of the power series in the present paper (the files describing the
full series can be obtained upon request).
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5.1.1. Family1:1a
With A = a, C = b andD = 0, we obtain

g =1, (20)
3e 65¢2
= 1-= 2 b2 o 42 b22 . 21
o 8(a—|— )+256(a—|— )+ (21)
1, 2 % 22 , 135%° , 23 ¢
E = 2( +b°) — 32( + b)) + 6144( +b9)° + (22)
T X_c05s——(a +b%)cos3 +
a b
2
22 )
+3072(a +b°)°(57cos3 +11cos5) +--- . (23)

Family 1: 1z exists only for the particular case of an axisymmetric potegiat 1)
and its orbits are rectilinear.

5.1.2. Family1:1b
With A = a, C = 0 andD = b, we obtain

q = 1+Z( 2 b2)+ ( 7a* + 4a°b? + 3b*) + - - (24)

0 = 14+ 5(-3a" = b7 + (65a4+34a2b2 B+ (25)

E = }(a2+b2) + iz(—% — 14a%? — b +
+Fz4(135516+2517a4b2+30912b4 856°) + ... (26)

X = acoss+ i(—a3—|—abZ) cos3 +

2

32 o 14
+—3O72[(57a — 54a°b* — 3ab™) cos 3 +

+(11a® — 224°b% 4+ 11ab*) cos 5] + - - - , (27)
y = bsins + i(—azb + b sinds +

2
4 213 5\ i
+—3072[(51a b — 42a°b> — 9b>) sin I +

+(12a*h — 22a%b° 4 116°) sin5s] + - - - . (28)

The members of this family are loop orbits. A change in the signafb reverses
the direction of motion on the same orbit. The limits of the domain of existence of
this family are obtained by setting= 0 orb = 0 in the above expressions. When
a = 0, periodic loop orbits degenerate inteaxial orbits. In the(g, E)-plane these
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Figure 2.Limits of existence of the families of periodic orbits computed analytically (solid line)
and numerically (dashed line).

orbits lie along the curve labeled 15 in Figure 2, given by

€ 3e?
1 € , 852 ¢

E=Zb— b~ pSq.... 30
2" "33 “e1ah T (30)

The elimination ofb between these equations gives

1-$p4 g 31
q= 5 + 8 + - (31)

This curve is also the limit of stability of thg-axial orbits, as shown in paper I.
To compare with the results given in this paper, the following remarks must be
taken into account. Figure 6(a) of paper | uses the amplitude instead of the energy.
The expression of,1 given by Equation (59) relates to anorbit; for a y-orbit,
the appropriate expression iggli1. Whene, the square of the amplitude, in these
expressions is substituted for the energy (Equation (55) of paper I), we recover the
expression given by Equation (31).

If we setb = 0, we obtain orbits degenerated along #hexis, with values of
q > 1.

l € 62 2
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q' describes the same limit as when we exchange the roles ofand y axes.
Consequently’ = 1/¢; ¢’ can be compared more easily¢g of paper I.

5.2. RESONANCE 1:2

As an example, we give below a detailed exposition of the application of the
Lindstedt’s method to the resonance 1:2, up to second order, where the equations of
condition impose a relation between the coefficignsnd D.

As explained in Section 3, at order 0, the solution is given by

oo =1, (33)
90 = 3. (34)
X0 = ACOSs, (35)
yo = Ccos2 + Dsins. (36)

Now, in Equations (8) and (9), we substitute the expressions given by Equa-
tions (10)—(12) and (16) fox(z), y(¢), o andg. At first order ine, we obtain

x{ +x1 = 3(8Ac1+ 8AD?+8AC? + 3A%) coss +
+%(—4AD? + 4AC? + A% cos 3 + 2ACDsin 3 +
+(AC? — AD? cos5 + 2ACDsin 5, (37)
yi +4y; = A’C + (8Coy + 16Cq; + 12C D? 4 12C3 + 2A%C) cos 2 +
+(8Do1 + 16Dg1 + 12D% 4+ 12C?D + 2A?D) sin 2 +
+A2Ccos4 + A’Dsin4s + (—12CD? + 4C3) cos 6 +
+(—4D3 + 12C?D) sin 6. (38)

In order to avoid secular terms in the first order solution, we must set to zero
the coefficients of cos and sins in the right hand member of the first equation
and the coefficients of cos2and sin 2 in the right hand member of the second
equation. The coefficient of sinis already zero and we are left with three equations
of condition.

8401 + 8AD? + 8AC? 4+ 34 =0, (39)
8Co1 + 16Cq1 + 12C D? + 12C3 4 2A4%C = 0, (40)
8Do1 + 16Dgq1 + 12D + 12C?D + 2A%D = 0. (41)

Two of these equations are independent and give, @ndg;:

oy = —3A?2-C%?-D?, (42)

q1 = 1i6A2 — %CZ — %Dz. (43)
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Equations (37) and (38) now admit the periodic solution
x1 = 3(4AD? — 4AC% — A% cos3 — ACDsIN3 +

+4(AD? — AC?)cos5 — L ACDsin 5, (44)
y1 = 3A%C — £A%2Ccos4 — LA%Dsin4s +
+2(3CD? - C3) cos6 + (D® — 3C2D) sin 6s. (45)

At order 2, the same process gives us the following differential equations:
Xy +xp = 5,(76840, — 12164 D* — 24324C2D? — 12164C* —
—8804°D? — 9764%C? — 1954°) coss — 2A%CDsins +
+ 55,(480AD* — 480AC* + 17643D? —
—304A3C? — 57A% cos 3 +
+3(—10ACD® — 10AC3D — 5A%CD) sin¥ +
+ 55,(4804D* — 480AC* + 4964°D? —
—49643%C? — 334% cos5 +
+1(~30ACD? — 30AC3D — 314%CD) sin 5 +
+ 45(—66AD* + 396AC2D? — 66AC* +
+3543D? — 3543C?%) cos & +
+ £(132ACD® — 132AC3D — 35A%CD) sin 7s +
+ 4(—31AD* + 186AC2D? — 31AC*) cos S +
+2(31ACD® — 31AC3D) sin %, (46)
Y5+ 4y, = E(—20A2C D? — 20A2C% — 9AC) + %(384Co, +
+768Cq, — 792C D* — 1584C3D? — 792¢C° —
—5684%C D* — 56842C3 — 734%C) cos 3 +
+ £(384Do, + 768Dg, — 792D° — 1584C2D% —
—792C*D — 56842D°% — 5684%C?D — 67A*D) sin2s +
+ 4(—142A2C D? — 224%C3 — 27A*C) cos 4 +
+ 5 (—8242D% + 3842C%D — 27A%D) sin4s +
+ #(792C D* + 528C3D? — 264CS + 48042CD? —
—1604°C® — 194%C) cos 6 + 35(264D° — 528C%D° —
—792C*D + 160A?D® — 480A%C?D — 19A*D) sin 65 +
+ %(23142C D? — 77A%C3) cos 8 +
+ % (7T7A2D® — 231A%C?D) sin & +
+ 2(-55CD* + 110C3D? — 11C®) cos 16 +
+3(—11D% + 110C%D® — 55C*D) sin 1G. (47)
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The equations of condition read

76840, — 12164 D* — 24324C%D? — 12164C* —
—88043D? — 97643C? — 1954% = 0, (48)

ASCD =0, (49)

384Co, + 768Cq, — 792C D* — 15843 D? — 792¢° —
—56842C D? — 56842C3 — 73A%C =0, (50)

384Do, + 768Dgy — 792D° — 1584C2D3 — 792C*D —
—56842D% — 56842C2D — 67A*D = 0. (51)

These condition equations cannot be solved with respeet tand g, for an
arbitrary choice of the coefficients, C andD. As we exclude the possibilitg = 0
(axial movements, already studied in paper 1), the condition of solvability reads

CD=0. (52)
This gives two families that we label 1a2nd 1:2.

5.2.1. Family1:2a
With C = b andD = 0, we obtain

1
— T4 S22 —49* + 16(%p? + 368* ., (53
4= 5+ 16 € (@ >+1536( - +368%) +---,  (53)
o = 1+ g(_gaz — 8% + ﬁ(195a4 +9762%% + 1216%) + -+, (54)
1 ¢ e?
E = Z(a®+4b® + —(—9a* — 64ab? — 80b* 4065:° +
2(a + )+ 32( a )+ 18432(
+ 407441%2 + 10000@:%h* + 86592°) + - - - , (55)

X = acoss+ o [( 3a® — 12ab?) cos 3 — 4ab®cos 5] +

+3 6 o8 0[(85&15 + 456Q:%b? + 720ub*) cos 3 +

+ (1652° + 248Q:°h? + 240ub™) cos 5 +
+ (70Q:3h?% 4 132ub*) cos & + 744ab* cos Q] + - - - , (56)
y = bcosd + i[GaZb — 2a°bcos 4 — 3b°cos 6] +
2
* 2304
+ (285%1*b + 240Q:%h> + 3960°) cos 6 +
+1232%b3 cos 8 + 1320°cos 1G] + - - - . (57)

0[ —324%b — 720Q:%h° + (108Qi*b + 882h%) cos & +
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Figure 3.Limits of existence of families of periodic orbits in the neighbourhoog ef 0.62.

These equations describe periodic banana orbits. A change of digyivefs an orbit
which is symmetric to the original one with respect to thaxis, whereas a change
of sign ofa leaves it invariant. The limits of the domain of existence of the family are
obtained by setting = 0 orb = 0 in the above expressions. Proceeding in the same
manner as for the loop orbits, we obtain, in tige E)-plane the boundary where
banana orbits degenerate int@xial orbits (curvex12a in Figure 2)

1 e 52
=—+-E+_—E“+--- 58
1=37g" V3 T 58)
and the boundary where they degenerate jnéxial orbits (curvey12 in Figure 2)
1 € 7¢?
= __F_ _—_F?4...
1=578" 384 (59)

Curvex12a is also a limit of stability forx-axial movement, as it is shown in
paper | (curvea2 of Figures 3(a) and 6(a)). When expressed in termg ofthe
expression of,» (Equation (60) of paper I) reduces to our Equation (58).
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5.2.2. Family1:2b
With C = 0 andD = b, we obtain

1 € , 2 e 4 2,2 4
= 24+ —(@® - 4® + ——(—61a* + 256%h% + 368*) +---, (60
9= 5%16¢ )+ 1538 + + )+ (60)
2
o= 1+ g(—3a2 —8p?) + %3(195:4 + 8822 + 1218%) +---, (61)
E = 1(a2+4b2) + = (—9a* — 64a%b? — 80b%) + i (4065:° +
2 32 18432
+38296:*h% + 90784%b"* + 86592°) + - - - | (62)

X = acoss + 9%5[(—&13 + 12ab?) c0s 3 + 4ab®cos 5] +

+ (855%:° — 264Q:%p% — 720ub*) cos 3 +

62
46080[
+ (165:2° — 248:%p? — 240ub*) cos 5 +
+ (—=70°p? 4 132Qub*) cos & + 74dab* cos Q] + - - , (63)

2
_ . i . 2 . 3 € 4
y = bsin2s + 24( 2a“bsinds + 3b sm6s)+—23040[(10801 b +

+328:%b°) sin 4s + (285:%b — 240Q:%b° — 396(°) sin 6s —
—1232°p3sin & + 1320°sin10:] + - - - . (64)

These equations describe periodic antibanana orbits. A change of gigewarses

the direction of motion on the same trajectory, whereas a change of sigaafes it
invariant. The limits of the domain of existence of the family are obtained by setting
a = 0 orb = 0 in the above expressions. In thg E)-plane the boundary where
antibanana orbits degenerate imtaxial orbits (curvex12b in Figure 2) is given by

1 € 7€,
q=7 8E 384E + e (65)
They degenerate intp-axial orbits along the same boundary as the orbits of family
1:24 (curveyl2in Figure 2).

Curvex12b is also a limit of stability forx-axial movement, as it is shown in
paper | (curveb2 of Figures 3(a) and 6(a)). When expressed in term& ,othe
expression ofy,, (Equation (61) of paper I) reduces to our Equation (65). For a
given value ofg, curvesx12a andx12b delimit a range of energy in which-axial
movements are unstable.

5.3. RESONANCE 2:3
To solve the equations of condition at order 4, we must impose the relation

CD(D?-C?% =0. (66)



216 RICHARD SCUFLAIRE

At first sight, this equation has four families of solutions:

(al) C#£0,D =0,
@2 C=0,D #0,
1) D=C,
b2) D=-C

In fact, it appears that the change of variables
s=s"+3m (67)

transforms a solution of typ@ 1) into a solution of typ&a2) so that there is no need
to distinguish between the two types. The same remark holds for the typesnd
(b2). So, we have only two families that we label 2:8nd 2: 3.

5.3.1. Family2:3a
With C = b andD = 0, we obtain

_2+e
9= 3728
2

(4a® — 9b?) +

(—1616:* + 4464%b% + 234D™) + - - - | (68)

+ 30720

B 1+e
T 273
2
€ 4 2,2 4
_~ 1 137
+5120(650:z + 1656:°b° + 137D + , (69)

(—6a? — B?) +

1
E = §(4(12 +o?) + 5i12(—144a4 — 576422 — 409,%) +

2

(21 6 1 116752322
+9830400( 6800@° + 11675232%% +

+158872322%b* + 903595%°) + - - - | (70)

X = acos + 1%0(—3041192 cos4 — 5a°cos 6 — 6ab?cos 8) +

105840@3p° + (118944a3p° +

62
+ 8601606_
+113400@b*) cos 4 + (15960@:° + 3024Q:°b?) cos 6 +
+ (455616:°b° + 22680@:h*) cos & +

+ (3080Q:° + 17955@b*) cos 1G + 95904:°p% cos 12 +
+ 7465%b* cos 14] + - - - , (71)
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y = bcos3 + &)(18&1217 coss — 36a’bcos & — 45b3cos 3) +

62

286720
+ (1260Q:%b — 13230@:°b%) cos 5 +

+ (9072Q:%b + 39312:%b%) cos & +
+(19152@:%b° + 15592%°) cos & + 2124Qi*h cos 1F +
+66528:2b° cos 13 + 5197%° cos 15] + - - - . (72)

+

d(—45360014b — 438480:°h%) coss +

These equations describe periodic fish orbits. A change of signgofes an orbit
symmetric to the original one with respect to thaxis, whereas a change of sigrbof
leaves it invariant. The limits of the domain of existence of the family are obtained by
settinga = 0 orb = 0 in the above expressions. Proceeding as above, we obtain, in
the(g, E)-plane the boundary where fish orbits degeneratexrdmial orbits (curve

x23 in Figure 2)

2 € 11e2
T o Pilly - S 73
1=37T5 280" T (73)

and the boundary where they degenerate jnéxial orbits (curvey23 in Figure 2)

2 € 7e2
- _E— —E?+..., 74
1=37 6" 160" T (74)

5.3.2. Family2:3b
With C = D = b/+/2, we obtain expressions gf o andE which coincide with the
corresponding expressions for family 2::3p to order 3;x andy are given by

X = acosd + %(—3&11)2 sin4s — 5a° cos 6 — 6ab?sin &) +
2
€
+ 860160&
+ (15960@:° 4 3024Q:3b?) cos 6 + (455616:°b% + 22680@b*) sin & +
+ (3080Q:° — 17955@b%) cos 18 + 959043 sin 12 —

— 7465m:b* cos 14] + - - - , (75)

(118944@°p% + 113400@b%) sin 4s +

_ b (cos3 +sin ) + ¢
Y 640y/2

+ sin7s) + 45b3(cos 9 — sin %) +

[180a2b(coss — sins) — 36a2b(cos & +

2

—— [(—45360Q:% —
2867200/2 L€
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— 438480:%b%)(coss — sins) + (1260Q:*b + 13230@:%h>)(cos 5 —

— sin5) + (9072Q:*h + 39312:%b°)(cos & + sin 7s) +

+ (—19152@:%h® — 15592%°)(cos & — sin ¥) +

+2124Q:*b(cos 1% + sin 11s) — 6652&%b°(cos 13 — sin13) —
—5197%°(cos 15 4 sin15)] + - - - . (76)

These equations describe periodic antifish orbits. A change of signevkrses the
direction of motion on the same trajectory, whereas a change of sigieaf/es it
invariant. In the(q, E)-plane, they have the same domain of existence as fish orbits
and degenerate into axial orbits on the same boundaries.

5.4, RESONANCE 3:4
At order 6, we obtain the relation
CD(C? - 3D?(3C? - D% =0. (77)

This equation admits six types of solutions:

(al) D=0,

(a2) D =—+/3C,
(@3) D =+/3C,
(1) C =0,

(a2) C =3D,
(a3) C = —+/3D.

The transformations
s=s'+3r and s=s"+3%n (78)
allow us to group them into two families.

5.4.1. Family3:4a
With C = b andD = 0, we obtain

3 €
= S+ —(94? — 16h?
7= 2% g6™ )+
2
€ 4 2,2 4
+ orag( 465" +1216%° + 256" + -, (79)

1 € 2 2
0—§+2—16(—27a —32b)+
2

(1228m" + 23424%b% + 17408™) + - - -, (80)

+ 145152
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E = —(9a +16b%) + fgz( 72%* — 2304%b° — 1280%) +

€
——_(48401955°% +2 4p2 + 220662144%p*
+219469825 840195%° + 206098560%»% + 220662144°h* +

+108867588°%) + - .- , (81)

2

X = acos3+@( 56ab?cos5 — 7a®cos S — 8ab?cos 1k) +

2
——[-355740@°%h%co 506352@°3p% +
2483712(5 S5+ (

+ 344960@b%) cos 5 + (46084%° — 9856Q:°h%) cos S +

+ (139920@3p% + 49280Q:6%) cos 1% + 500192:6% cos 13 +
+8893%° cos 15 + 2436723 cos 1% +

+16688@b* cos 18] + - - -, (82)

y = bcos4 + i(42azb cos 3 — 6a’bcos 18 — 7b3cos 13) +

2

—— [(—785862@*h — 432432@2b° 2 —
4191264(5( ) cos

—2794176%b° cos & — 7276%*b cos 8 + (112266@°*» —

— 237600:%b3) cos 16 + (249480@:%b° + 1422960°) cos 12 +

+ 251559*b cos 16 + 691200:%5° cos 18 +

+474320°c0s2G] + - - - . (83)

These equations describe periodic pretzel orbits. A change of signgofes a
trajectory symmetric to the original one with respect totkexis, whereas a change
of sign ofa leaves it invariant. The domain of existence of the family in@ekE)-
plane is delimited by the curves34 where they degenerate inteaxial orbits and
y34 where they degenerate inteaxial orbits (Figure 2). Curve34 is given by

_ 3 n 3e 87c2
1= 2716 1792

and curvey34 by

E?4... (84)

3 3 1292 ,
q=-——FE— E

4 16 1792 (85)
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5.4.2. Family 3:4b
With C = 0 andD = b, we obtain forg, o andE expressions which coincide with
the corresponding expressions for family 3 b to order 5;x andy are given by

X = acos3 + ﬁ(S&zbz cos5 — 7a®cos 3 + 8ab?cos 1k) +

2

€
74 312 o 2 3,2
+—2483712(£355 0@°b* coss + (—506352@°H

— 344960@b%) cos 5 + (46084%° — 9856Q:°h%) cos S + (86)
+(—139920@3p? — 49280@:b*) cos 1% + 500192:h* cos 13 +
+ 8893%:° cos 15 — 2436723b% cos 1% + 16688@b* cos 18] + - - - |

y = bsinds + %(—4241219 sin 25 — 6a2b sin 10 + 763 sin 12) +

2
€
VITYET YT U 20%h & 4324320:2h3) si
+ 1012640 /8°8620°b + 432432077 sin % +

+27941762b° sin & + 7276%*b sin & + (112266G*h — (87)
— 23760@:53) sin 1 + (—2494800%b° — 1422960°) sin 12 +
+ 251559%“b sin 16 — 69120@:%6° sin 1& + 47432®° sin 26:] + - - - .

These equations describe periodic antipretzel orbits. A change of sigrevérses

the direction of motion on the same trajectory, whereas a change of sigaafes it
invariant. In the(g, E)-plane, they have the same domain of existence as the pretzel
orbits and degenerate into axial orbits on the same boundaries.

5.5. RESONANCE 3:5

We have obtained, at order 7, the same relation betweand D as in the case of
resonance 3:4. The six types of solutions can be grouped in the same manner into
two families.

5.5.1. Family3:5a
With C = b andD = 0, we obtain

3 € €2
= =4+ ——(94% — 25b%) + ——(—231a* + 70%b? + 62%%) + - - -
q 5+120( a )+5120( + + )+ ,
(88)
1 €
= =+ —(—27a® — 50b?
o = 3+ g1 720 500 +
2
+ (7020:* + 2265@%b% 4 2187 + - - -, (89)

82944
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1 €

E = —(9%+ 25%) + —— (=72%* — 360Q:%h?% — 31259*

18( a” + )+ 2592( ) +
2

——(1580472@°% + 1055382752 + 177509475%b*
+7166361é + + +

+118250000°) + - - - (90)

X = acos3 + 1i28(—20ab2 cos % — 4a°cos S — 5ab®cos 13) +

62

—__[-2066064@°bh% coss + (1591590@°h>
+14760345é +( +

+2002000@b%) cos & + (273873@° + 1401400°b) cos & +

+ (773272%3b% 4+ 500500@b) cos 13 + 52852&° cos 15 +
+337480@b* cos 1% + 1844115°%% cos 19 +

+160930@5* cos 23] + - - - , (91)

y = bcos5 + %52(300[121; coss — 75a°bcos 1k — 1003 cos 15) +

2

* 308529331
+5405400@%b cos & — 169884000%b° cos 3 + (145945800%h +

+1385133756%h°%) cos 1k + (308107800%h° +
+ 330330000°) cos 15 + 3562650@*h cos 15 +
+ 12551962625 cos 2% + 110110000° cos 25] + - - - . (92)

£(—5837832064b — 797296500%b°) coss +

A change of sign of or b gives a trajectory which is symmetric to the original one
with respect to the-axis or to they-axis (both symmetry operations applied to this
orbit give the same result). The domain of existence of these orbits i(ythe)-
plane is delimited by the curves35 where they degenerate inteaxial orbits and
y35 where they degenerate inteaxial orbits (Figure 2). Curve35 is given by

3 3 3e?
=+ FE—F’+... 93
1=5% 20" 236" T (93)
and curvey35 by
3 3 30¢2
g Xp 3, (94)

5 20 1280
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5.5.2. Family 3:5b
With C = 0 andD = b, we obtain forg, o andE expressions which coincide with
the corresponding expressions for family 3 1 to order 6;x andy are given by

X = acos3 + 1128(2041192 cos & — 4a°cos S + 5ab?cos13) +
2

—_[2066064@°b° coss + (—1591590@°p>
+ 14760345é +( +

— 2002000@b*) cos & + (273873G° + 140140@°h) cos & +

+ (—773272%%b% — 500500@h") cos 13 + 528528:° cos 15 +
+337480@b% cos 1% — 1844115%°b?cos 18 +

+160930@b% cos 23] + - - - , (95)

y = bsinG + %52(—3001219 sins — 75a2b sin 11s + 100° sin 15) +

62

* 398529331
— 5405400@%b sin 7s + 169884000%h° sin & +

+ (145945800 + 1385133762h°) sin 115 +

+ (—308107800%»° — 330330000°) sin 15 +

+ 35626500 sin 17 — 125519625%b° sin 21s +
+110110000°sin 25] + - - - . (96)

£(5837832004b + 7972965002%b°%) sins —

A change of sign of: or b reverses the direction of motion on the same trajectory.
These orbits have the same domain of existence as those of fanailgrdi®legenerate
into axial orbits on the same boundaries.

5.6. RESONANCE 4:5
We have obtained, at order 8, the relation

CD(C — D)(C + D)(C? —2CD — D?(C?+2CD — D? =0. (97)
It admits eight types of solutions:

(al) D=0,

(@2) C =0,

(a3,a4) C = +£D,

(b1,b2) C = (1++/2)D,
(b3,b4) C = (—1++/2)D.
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The changes of variables
s=s"+kn, k=123
show that we can group them into two families.

5.6.1. Family4:5a
With C = b andD = 0, we obtain

4
= — 4+ —(16a% — 25V
q + 160( ) +

2

+ 2375 0( 55552:* + 14560@:%h% + 1062%%) + -

1
= = 4+ —(—24d® — 25h°
o —|— 256( ) +

294912(374414 +592:%h? + 437 + -

E = (16a2+25b2)+m( 2304* — 640Q:%h% — 3129%) +
2

— _(29970432°% + 113260160*h% + 106365440%b* +
67947724§ 9970 + +

223

(98)

(99)

(100)

+49753125%) + .. - | (101)

x = acos4r+2—88( 90ub? cos 6 — 9a®cos 12 — 10ub? cos 14) +

62

——[-2201472@°%h% cos 2 + (3341520@°h>
+ 120766464 $3+( +

+1842750@b"*) cos 6 + (2240784° — 11466003b) cos 12 +
+ (735280@°h2 + 204750@b*) cos 14 + 251842%b* cos 16 +
+432432.°cos 2G + 110432@3b? cos 22 +

+70492%b* cos 24] + - - -, (102)

= bcos5 + 6—08(180Qz2b cos 3 — 20(?b cos 13 — 22%°cos 15)

2

+ 193226342
—1891890002h° cos & — 982800Q*h cos 1k + (4717440a%p —

(—424569600*p — 127764000°6°%) cos 3 —

_|_

— 3239600@°°%) cos 13 + (112694400°h° + 50675625°) cos 15 +

+1033200@%b cos 2% + 2642900@°h° cos 23 +

+16891875°c0s25] + - - - . (103)
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A change of sign ofi gives a trajectory symmetric to the original one with respect
to the y-axis, whereas a change of sign lofleaves it invariant. The domain of
existence of these orbits in thige, E)-plane is delimited by the curvest5 where
they degenerate into-axial orbits andy45 where they degenerate inteaxial orbits
(Figure 2). Curvex45 is given by

+oE-T—E2 4. (104)

E— —E>+.... (105)

5.6.2. Family4:5b

With C = v2++/2b/2 andD = (v 2+ +/2)(v/2 — 1)b/2 we obtain forg, o and

E expressions which coincide with the corresponding expressions for family 4 : 5
up to order 7;x andy are given by

x = acosk + 2%8[—45\/%[72(0036 +sin6) — 9a3cos 13 —

—5v2ab?(cos 14 + sin 14)] + - - - , (106)

V2442

y = T[bcos&—k(ﬁ—l)bsin&] +

+25\/2+\/§

6 2 .
o215 \72%’blcos3 (v/2—1)sin 3]

—8a%b[cos 13 + (V2 —1)sin13] —
—%3[(vV2—1)cos15 +sinl5]} + - . (107)

A change of sign ofi reverses the direction of motion on the same trajectory, whereas
a change of sign ob leaves it invariant. These orbits have the same domain of
existence as those of family 4 u%nd degenerate into axial orbits on the same
boundaries.

5.7. NUMERICAL DETERMINATION OF THE BOUNDARIES

In order to assess the validity of the analytical determination of the domains of
existence of different families of periodic orbits, we have recomputed the boundaries
with a numerical method. We use the technique of Pomaactions. On the-
boundary of then : n family domain, the periodic orbits of the family degenerate
into x-axial orbits. These orbits and their neighbours are best studied in the plane of
sectionx = 0. LetT be the Poincar application and™’ its derivative at the origin

(see paper I). At the point where an : n periodic orbit springs from an-axial
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orbit, 7™, themth iteration of the Poincérapplication, is marginally stable. So, on
thex-boundary, we have

k
tr7™ =42 or trT’=Zcos—n, k=01,.... (108)
m

The precise value df can be deduced from the case of small amplitude. In this case,
x andy are given by expressions (13) and (14) ang: 1/m. Without restricting the
generality, we can suppose that- 0 andB = 0. We obtain points of sectior (= 0
andx > 0) fors = (2k + %’)n/m. For two consecutive sections, corresponding to
so = 3 /2m ands1 = 77 /2m, we have

3nw . 3nm
= CcoS—— + Dsin—, 109
o 2m + 2m ( )
.3 3
Yo = —2C5|nﬂ+£Dcosn—n, (110)
m 2m m 2m
Tni Tnm
= Ccos—— + Dsin—, 111
L 2m + 2m ( )
7 7
= —Zesin?” 4 " peos?”. (112)
m 2m m 2m

In this approximation the Poincaapplication is linear and can be written

2nm m 2nw

Y1 = YoCOS—— + yo— Sin—, (113)
m n m
.2 2
1= —yoi sin 2% + Yo cosZ . (114)
m m m
Thex-boundary of then :n family is thus determined by the condition
2n
tr 7’ = 2 cos2 2. (115)
m

This condition was used in our numerical computations to determinelloendaries.

The y-boundaries can be characterized in a similar manner. The plane of section
y = 0 must be used to study orbits ngaaxial orbits.7" is marginally stable on the
boundary, so that

k
tr7’ = 2cos—, k=0,1,.... (116)
n

The consideration of orbits of small amplitude can give us the exact valkeVa¢
finally obtain

2m
tr T’ = 2 cost. (117)
n

This condition was used to compute numerically fheoundaries.

The results of the analytical and the numerical computations can be compared
in Figure 2. The analytical computation clearly lacks accuracy foy8¥andy45
boundaries and a small discrepancy is barely visible fox#tieboundary.
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5.8. STABILITY

We have not systematically investigated the stability of the above families of peri-
odic orbits. We have only determined the stability of the orbits represented in the
bifurcation diagrams of the next section.

6. Relations with the Stability of Axial Orbits, Bifurcation Diagrams

The synthetic view of different families offered by Figure 2 helps us to understand the
aspect of the bifurcation diagrams showing the families we have described originating
from axial orbits. As an example, let us take= 0.62. Figure 3 shows an enlargement
of Figure 2 in the vicinity ofy = 0.62.
Consider, first, the periodic orbits stemming from thaxial orbit. When we
followthelineg = 0.62, starting fronE = 0, we cross successively theboundaries
of families 3:5,1: 2 and 1 : 2. Essentially the same information is displayed in
the bifurcation diagram (Figure 4), where the ordingtgx is the maximum value
of |y| reached by the orbit. This bifurcation diagram and the next one have been
computed by entirely numerical methods and show the stability of the orbits.
Forthe same value, starting fronk = 0, we cross successively theboundaries
offamilies2 : 3,3 : 4,4 : 5and 1 :bl These crossings translate into the appearance

1.2

0.8

Ymax

04

02

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 4.Bifurcation diagram showing families of periodic orbits originating from.thaxial orbit
(solid line for stable orbits, dashed line for unstable ones).
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0 0.2 0.4 0.6 0.8 1 1.2 14 1.6

Figure 5.Bifurcation diagram showing families of periodic orbits originating from tkaxial orbit
(solid line for stable orbits, dashed line for unstable ones).

ofthe corresponding families in the bifurcation diagram (Figure 5), where the ordinate
Xmax gives the maximum value ¢f| reached by the orbit.

7. Conclusion

We have demonstrated that analytical techniques based on the Lindstedt method were
suitable for a quantitative study of periodic orbits. The present results were obtained in
a particular potential, but the method can be used with any regular analytical potential.
The algorithms we have described give the law of motion on the periodic orbits of
different families up to an arbitrary order. The effective order of the series is limited
only by the available computing power. The computations are rather cumbersome
but they provide a complete description of the motion.

In this work, these laws of motion have been used to determine the domains of
existence of different families of periodic orbits with a fairly good accuracy.
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