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Towards the Red Giants: Renzini’s Criterion
and Secular Stability

R. Scuflaire, A. Noels, F. Carlier

Institut d’Astrophysique, Université de Liege, Belgium

Abstract: In his attempt to answer the question “Why do stars become red giants ?”, Renzini
formulated a criterion of thermal stability. After the main sequence phases, this criterion is violated
in the envelope and a thermal runaway drives the star in the red giants region of the HR diagram.
However, the validity of the criterion has been questioned. In hydrogen shell burning models, the
criterion was found inaccurate and it seemed that the very existence of a “simple explanation” was
perhaps inappropriate or misleading. The nature of the problem as well as the similarity between
Renzini’s criterion and an integral form of the secular stability criterion lead us to investigate the link
between both criteria. We show that Renzini’s criterion is equivalent to a crude approximation of a
secular stability criterion, not appropriate to this phase of stellar evolution.

1 Introduction

After the exhaustion of hydrogen in their cores, intermediate mass stars undergo a rapid expan-
sion of their envelope and they become red giants. In an attempt to understand the causes of
this expansion, number of authors have proposed simple explanations (Renzini 1984, Yahil and
Van den Horn 1985, Applegate 1988, Whitworth 1989, Bhaskar and Nigam 1991, Renzini et al.
1992). The explanation of Renzini and his collaborators rests on a thermal stability criterion
that we discuss in this paper.

According to Renzini (1984), the thermal stability of a star depends on the response of the
luminosity through any given shell of the envelope to an infinitesimal change of its radius. In a
later work (Renzini et al. 1992), this criterion was improved to take into account the feedback
effect of the envelope on the nuclear energy production zone. A star is thermally stable if the
following inequality holds at each point in the star:

§lnL(r) 6lnLn(r)
$lnr $lnr > 0. (1)

6L(r) and 6Ln(r) are respectiveley the variation of the luminosity and the variation of the
contribution of nuclear reactions to the luminosity which would result from an infinitesimal
expansion ér of the layer located at point r. The criterion is fulfilled during the main sequence
phase of intermediate mass stars. But as the evolution proceeds, during hydrogen shell burning,
the criterion is violated in the envelope. This instability, primarily controlled by the behaviour
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of the opacity, marks the onset of a rapid expansion of the envelope which drives the star in
the red giants region of the Hertzsprung-Russell diagram. This thermal runaway would eject
the envelope if it were not quenched later by the development of convection.

However this point of view has been criticized on the basis of numerical computations.
Weiss (1989) has computed standard stellar evolutions and has performed numerical experi-
ments. The relation between Renzini’s criterion and the envelope behaviour was found am-
biguous. The agreement is better after the maximum luminosity is reached. Weiss concludes
that Renzini’s criterion merely reflects the changes in luminosity and radius that take place
during the evolution but does not demonstrate any property of the star. Iben (1993) performed
several numerical experiments in an attempt to isolate those factors which do or do not play a
role in the expansion of the envelope. According to him, the expansion of the envelope results
from a complicated interplay between the core, the envelope and the hydrogen burning shell ; a
“simple explanation” of the phenomenon can be an inappropriate and misleading description.

2 Secular stability

Let us state the problem on the firm basis of the well established linear theory of stellar stability.
If we artificially break the thermal equilibrium of a stellar model while maintaining hydrostatic
equilibrium, the model will subsequently evolve on a Kelvin-Helmholtz time scale. Whether
the model evolves towards or away from its initial equilibrium configuration, this configuration
is said to be secularly stable or secularly unstable. The time evolution of a linear secular mode
can be described by a factor of the form e** and the coefficient s can be written (Ledoux 1963
and 1969):

/M(n, ~1)%(ge - %’M)dm
_ 0 p m

_/M {czrz i (ﬁ) 2} — )
o ar \r

As the denominator is positive, the considered secular mode is stable if

-l (er - 9P

or
r

m/oM(rs - 1)‘5—:(55 - d—%@)dm > 0. 3)

A model is secularly stable if all its secular modes satisfy this condition. One could be tempted
to state the condition for secular stability in the following terms: a stellar model is secularly
stable if criterion (3) is fulfilled for all linear perturbations compatible with the continuity
equation, the hydrostatic equilibrium equation and the transfer equation. However, such a
statement is false because the integral operator defining the quadratic form (3) is not self-
adjoint (it is easy to find counterexamples for simpler problems).

When the computation of secular stability modes was out of reach of the available computing
facilities, condition (3) was generally tested for only one secular mode, which was supposed to
be not too far from a homologous transformation:

5P _

b_ b
r p pP

—4a, ... where a = const. (4)

Substituting into criterion (3) and neglecting the variation of I's throughout the star, one
obtains a crude secular stability criterion: in a homologous perturbation,

M or .
/ dedm — 6L and — have opposite signs. (5)
0
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This means that in a homologous contraction, the total variation of the nuclear energy produc-
tion must exceed the variation of the luminosity.

One can further simplify the criterion if the star is entirely radiative and if the opacity and
energy generation laws assume the simple forms

K = Kop™T" (6)
e = eptT". (7)

The criterion reduces to the well-known and extensively used Jeans’ secular stability criterion
(Jeans, 1928):
3p+v+3m+n>0. (8)

In the course of their evolution, stars go through phases where their structure departs
markedly from thermal equilibrium. During these phases, the conversion of gravitational energy
into thermal energy and the reverse process become significant when compared with the nuclear
energy generation. This situation can be formally coped with by adding a gravitational energy
term ¢, = —T dS/dt to the nuclear term in the equation of thermal equilibrium. Such models
are called quasi-static models.

The concept of secular stability has be extended to quasi-static models (Gabriel 1972, Noels
1972). These authors have also shown that the results of the secular stability analysis must be
understood as linear approximations to the evolution.

We have computed a number of standard stellar evolutionary tracks for a few masses between
2 and 15 Mg and for a solar chemical composition (X=0.71673, Y=0.26571 and Z=0.01756) up
to the red giant phase (Figure 1). We did not carry out a linear secular stability analysis. The
stability of the 2 Mg and 15 Mg models was however investigated in the following way. At each
point of their evolutionary track, we let them evolve at constant chemical composition, without
turning off the nuclear energy source. If the model evolves towards a nearby configuration, we
say that it is stable, otherwise we consider it as unstable. This definition is a bit loose, but
in practice, it is easy to handle. We guess that this sort of stability must be close to secular
stability but we did not investigate the link between them. In Figure 1, the arrows labelled
QS indicate the point where the models become quasi-static and the onset of the instability is
indicated by the arrows labelled I. Figure 1 shows clearly that the beginning of the crossing
of the HR diagram (i.e. the end of the main sequence phase), the departure from thermal
equilibrium and the onset of instability occur independently. It is therefore difficult to consider
this instability as the primordial cause of the evolution of a star towards the red giant phase.

3 Renzini’s criterion as an approximate secular stabil-
ity criterion

For the following discussion, we rewrite Renzini’s criterion in a different form. The left-hand
side member of criterion (1) may be written

_ 7/0 dedm — §L(m)

. L(m
5 with v = Toirs] (m) . (9)
L(m)< n(m)
T
Criterion (1) is thus equivalent to require that
m ' or o
v / bedm — §L(m) and - have opposite signs (10)
0
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Figure 1: Evolutionary tracks from main sequence to red giants. At point QS the models
become quasi-static and at point I they become unstable.

at each point in the star. For a star in thermal equilibrium 4 = 1 and ~ departs significantly
from 1 only when the star is markedly out of thermal equilibrium. As Renzini’s criterion does
not include a ée,; term, we restrict the following discussion to models in thermal equilibrium.
In this case, Renzini’s criterion reduces to

m )
/ dedm — §L(m) and TT have opposite signs (11)
0

at each point in the star.

The approximate secular stability criterion (5) is thus criterion (11) applied to the surface
point of the model. On the other hand, criterion (11) applied at point r gives the contribution
of the sphere of radius r to the secular stability (or instability) of the model according to
criterion (5).

The link between Renzini’s criterion (11) and secular stability can be made tighter in the
following way. Instead of a homologous perturbation affecting the whole star, let’s consider a
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whole family (depending on the parameter r*) of perturbations described by

5—:=a and @=—3a if r<r*
p
*\ 3 (12)
—61=a(r—-) and 5_p=0 if r>r*
r r p

Ignoring the variations of I's, criterion (3) of secular stability becomes

/m dedm — §L(m*) and (ﬁ) have opposite signs (13)
0 T

at each point 7* in the star.

This criterion is exactly the same as Renzini’s criterion (11). The interpretation in terms of
secular stability brings a profound weakness of Renzini’s criterion to light. As the eigenfunc-
tions of the secular stability problem mimic the evolution (Gabriel 1972, Noels 1972), a good
approximation to an eigenfunction in this phase of evolution should allow the contraction of
the core and the expansion of the envelope. This is not the case for the functions of the special
family used to write down criterion (13). It may be argued that these functions form a basis for
all admissible secular perturbations. However the argument must be rejected: as the problem
of secular stability is not self-adjoint, the exact criterion (3) and Renzini’s criterion (11) might
lead to opposite conclusions.

4 Conclusion

Renzini’s criterion is a crude approximate secular stability criterion. From this point of view
it suffers from two flaws: it does not take thermal imbalance into account (no é¢, term) and it
is too crude an approximation to be useful.

On the basis of our computations and computations carried out by other authors, we believe
that the departure from thermal equilibrium or the onset of secular instability do not explain in
any way why stars become red giants. These instabilities may, possibly, explain some features
of the evolution towards the red giants but the primordial cause of the envelope expansion is
still unknown.
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