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Abstract. We study the stability of axial orbits in analytical galactic potentials as a function of the 
energy of the orbit and the eMpticity of the potential. The problem is solved by an analytical method, 
the validity of which is not limited to small amplitudes. The lines of neutral stability divide the 
parameter space in regions corresponding to different organizations of the main families of orbits in 
the symmetry planes. 
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I. Introduction 

The study of periodic orbits is a problem of great interest to the dynamics of 
galaxies. It is well-known that every stable periodic orbit is surrounded by a 
whole family of non-closed orbits with similar shapes and characteristics (Binney 
and Tremaine, 1987). Hence, the question of the stability of periodic orbits is 
an important one for the classification of the main families of orbits in galactic 
potentials. In particular, Pfenniger and de Zeeuw (1989) and Udry and Martinet 
(1994) have insisted on the importance of the stability of axial orbits for the 
construction and the shape of a triaxial model. 

Several authors have considered the problem of the stability of axial orbits 
(Binney 1981, Goodman and Schwarzschild 1981, Magnenat 1982a, Lake and 
Norman 1983, de Zeeuw 1985, Robe 1987, Martinet and de Zeeuw 1988, Miralda- 
Escud6 and Schwarzschild 1989). In most cases, this question has received only 
marginal interest. However, a detailed study of the stability of these orbits, if not 
limited to small amplitudes, is able to provide information on the appearance of 
other families of orbits, as will be shown in Section 5. 

As the stability of an axial motion reduces to a two-dimensional problem (see 
Section 4.2), it is sufficient to consider two-dimensional galactic potentials. Of 
course, this reduction to a two-dimensional problem would not be possible in the 
presence of rotation. Indications on the stability of axial orbits in that case may 
be found in Martinet and de Zeeuw (1988) and Martinet and Udry (1990). We use 
two families of analytical potentials depending of a single parameter, the ellipticity 
of the isopotentials. The first one is the logarithmic potential of Binney (1981), 
which has been extensively used in galactic dynamics (Magnenat 1982, Gerhard 
and Binney 1985, Martinet and de Zeeuw 1988, Patsis and Zachilas 1990, Pearce 
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and Thomas 1991). The second one has been chosen mainly on the grounds of its 
simplicity. They are described in Section 2. 

Davoust (1983) used the analytical method of Lindstedt-Poincar6 to investigate 
the regular families of periodic orbits in model elliptical galaxies. We use the 
same method, in a much simpler context (anharmonic oscillator with one degree of 
freedom) as a starting point for the present work. In this way, we obtain analytical 
expressions describing axial motions as a function of two parameters, the energy 
of the movement and the ellipticity of the potential (Section 3). Then, in a way 
closely related to the method used in the study of Mathieu's equation, we determine 
the limits of stability in the parameter space (Section 4). In Section 5, our stability 
results are used to delineate regions corresponding to different organizations of the 
main families of orbits in the symmety planes. 

The use of the algebraic programming system REDUCE made possible our 
analytical computations. All analytical results (movement and limits of stability) 
could have been obtained with purely numerical procedures. We have, in fact, 
systematically confirmed our analytical results with numerical integrations (with 
programs mainly written in FORTRAN). 

2. Models 

We have studied two simple galactic models without figure rotation. We have cho- 
sen analytical potentials V = V(x 2, y2, z2), symmetric with respect to the principal 
planes and whose equipotential surfaces are similar concentric ellipsoids. 

The motion along one of the symmetry axis, let say the x-axis, is, of course, a 
problem with one degree of freedom. When we study the stability of this motion, 
we find that the equations for the y and z perturbations separate. Therefore we can 
consider successively the stability of the motion against a perturbation in the (x, y) 
plane, then against a perturbation in the (x, z) plane. That is the reason why we 
use a two-dimensional potential in what follows. 

Our first potential is a logarithmic potential. Galactic models with logarithmic 
potential have a fiat rotation curve outside of the core and have been extensively 
used. Binney and Tremaine (1987) used the following expression: 

I 2 ln(R 2 + x2 y) = + y2/q2),  (1) 

where q < 1 defines the ellipticity of the equipotential curves, Rc is the core radius 
and vo the circular velocity at large distance from the centre when q = 1. Taking 
Rc as the unit length and Rc/vo as the unit time the expression of the potential 
simplifies to 

V(x, y) = ½ In(1 + x 2 + y2/q2). (2) 

We shall refer to it as V1 in the following. 
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Unfortunately, the density distribution associated with the logarithmic potential 
becomes unrealistic even for moderate values of q (shape of the isodensity curves, 
negative densities). So we have used a second analytical potential which has not 
this drawback. Our choice is rather arbitrary and has been essentially guided by 
computational facility: 

V ( x , y )  = ~ l  + x 2 + y2/q2 _ 1. (3) 

The additive constant has been added only for aesthetic reasons so that the potential 
vanishes at the centre. This potential will be denoted V2 in the following. 

Both potentials can be expressed as 

V ( x , y ) = f ( u )  with u = l T x  2 + y 2 / q 2 .  (4) 

Their isopotential curves are similar concentric ellipses whose axis ratio is q. In the 
neighbourhood of the equilibrium position, they coincide, in first approximation, 
with the potential of a harmonic oscillator 

V ( x ,  y) = ~x + 2 2y2 (5) 

with frequencies 1 and 1/q for an oscillation along the x-axis and along the y-axis 
respectively. 

Usually x denotes the long axis. This convention would oblige us to study 
separately the motions along the long axis and along the short axis. It is easier to 
study both cases simultaneously, allowing q to take values greater than 1. To be 
more precise, when studying the motion along the y-axis, the change of variables 

y = qx I ,  x = qy~ , t = qt I ,  q = l / q  I (6) 

reduces the study of a y-axis orbit to the study of an x-axis orbit with the same 
energy in a potential whose ellipticity is 1/q instead of q. 

3. Motion along the x-axis 

The equations of motion may be written 

5! + 2xf ' (1  + x 2 + y2/q2) = 0 ,  (7) 

~) + 2yf ' (1  + x 2 + y2/q2)/q2 = 0 ,  (8) 

where f l  is the derivative of f with respect to u. The motion along the x-axis obeys 
the equation 

+ 2x f1(1 + x 2) = 0 .  (9) 
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3.1. NUMERICAL COMPUTATION 

To validate our analytical calculations, the problem has also been tackled by numer- 
ical methods. We use the Runge-Kutta method to integrate Equation (9). With 4096 
equal steps per orbit, we obtain enough precision (we require an error less than 
10 -7 in the frequency) to test the correctness of the analytical expressions below. 
The error in the numerical computation is estimated by carrying out a second 
integration with a double number of steps. 

3.2. ANALYTICAL COMPUTATION 

Let us describe the analytical treatment of the problem. For clarity of the exposition, 
the particular expressions obtained for both potentials are given in the appendices. 
The equation of the motion along the x-axis reads 

+ x + F ( z )  = O.  (10) 

We develop F ( x )  as a power series of x. The solution x ( t )  is then obtained by 
the Lindstedt-Poincar6 method (see for instance the books of Nayfeh 1973 and 
Hayashi 1985, or the paper of Davoust 1983). We adopt the amplitude a of the 
motion as the parameter of the power series. At each step of the computation we 
impose the following initial conditions: 

x(O) = a ,  5:(0) = O. (11) 

In this way, one obtains the angular frequency 

a = 1 + a la  2 q- a2a 4 + a3 a6 q- a4a 8 4- " "  , (12) 

and the motion 

x ( t )  = a c o s a t  + a3(xlOCOSat + Xll cos3at)  

q-a5(x20 cos at  -F X21 COS 3at  -I- X22 COS 5at)  q- "'" (13) 

The parameter a is directly linked to the total energy E by the analytical relation 

E = V ( a ,  0) .  (14) 

The second member of this relation, expressed as a power series contains only 
even powers of a. Let e = a 2 to simplify the writing. The relation E = E(e)  can 
be easily inverted and e expressed as a power series of E.  The above expressions 
giving a and x (t) are easily expressed as power series of E instead of a (in the case 
of x(t),  x ( t ) / a  rather than x ( t )  is expressed as a series ofe or E). We have obtained 
these series up to the 18th power of e or E.  It required 13 hours of CPU-time on 
an IBM RISC 6000 station and the computation time doubles when the order is 
increased by one unit. 
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Angular frequency ~r as a function of amplitude a; (a) for potential VI; (b) for potential V2. 

As the amplitude is increased, the convergence of these series becomes slower 
and finally the series diverge. Two simple techniques are used to overcome this 
problem: a change of variables (use of the energy instead of the amplitude) and 
the replacement of power series by equivalent continued fractions (see for instance 
Khovanskii 1963). The use of these two techniques give excellent results. For 
example, the terms of the series giving a have alternate signs and slowly decreasing 
absolute values. The convergence becomes very slow as the amplitude approaches 
unity and the series diverges for amplitudes greater than unity. The equivalent 
continued fraction 

1 a IEa,~Ea~E a~E 
a = . . .  (15) 

1+ 1+ 1+ 1+ 1+ 

is computed analytically from the power series with REDUCE. The rational coef- 
ficients ~r~ are then converted in real format and used in a FORTRAN or Pascal 
program to produce numerical values of cr. Figure 1 shows cr as a function of 
the amplitude a obtained analytically. Figure 2 gives the number of terms (not 
counting the term of order zero) of the continued fraction necessary to obtain a 
given precision. Of course the computation of the angular frequency is not the goal 
of our study and may be achieved by simpler means. 

The same technique may be applied to the series giving x(t). One obtains a 
rational fraction the terms of which are Fourier series. Contopoulos and Seime- 
nis (1990) have used similar expressions as the starting point of their study of orbits 
in a two-dimensional logarithmic potential. 
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Fig .  2.  Number of  terms of  the continued fractions necessary to achieve a given accuracy in t r ( a ) ;  
(a)  for potential V i ;  ( b )  for potential V2. 

4. Stability of the Motion 

4 . 1 .  N U M E R I C A L  COMPUTATION 

We describe briefly the numerical method used to validate our analytical results. 
The use of Poincar6 sections is widespread for the study of dynamical systems with 
two degrees of freedom. It has been explained by several authors: Hadjidemetri- 
ou (1975), H6non (1976), Magnenat (1982 and 1982b), Pfenniger (1984). The 
phase space of such a system is of dimension 4. Imposing the value of the energy 
integral, the points of the plane of section z = 0 can be located by two coordinates 
y and 4. Let P be the intersection of an orbit and the surface of section and TP, 
T 2 P . . . .  the successive intersections (to remove the sign ambiguity in :~, the points 
are plotted in the surface of section only when :~ > 0). The Poincar6's applica- 
tion T is symplectic (area preserving), the justifications can be found in Binney 
et al. (1985). The stability of the motion along the z-axis reduces to the study of 
the stability of the origin of the plane of section as a fixed point of the Poincar6's 
application. When computing the motion along the x-axis, we compute at the same 
time the solutions of the variational equations, from which one obtains easily the 
linear operator T', derivative of the map T. It is obtained as a two-dimensional 
square matrix. The origin, fixed point of the Poincar6 map, is stable if the modulus 
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of eigenvalues of this matrix are less then unity. As T'  is symplectic, det T '  = 1 
and the characteristic equation is 

A 2 -  At rT '  + 1 = 0 ,  (16) 

where tr T ~ means the trace of the matrix. The condition of stability reduces to 

I t rZ' l  < 2 .  (17) 

In the plane of the parameters (q, a), the stability boundary is given by 

I t rT' l  = 2 .  (18) 

4.2. ANALYTICAL COMPUTATION 

Consider a motion in the neighbourhood of the x-axis. The linearized equations 
are (y is infinitely small, but x is not) 

+ 2xf ' (1  + x 2) = O, (19) 

~) + 2yft(1 + x2)/q 2 = O. (20) 

The z-perturbation would satisfy an equation of the same form as Equation (20). 
These equations are decoupled and this circumstance allows us to study separately 
the V and z component of the perturbation, reducing the stability problem to a 
two-dimensional one. Equation (19) is the same as Equation (9), its solution has 
been obtained in the preceding section. Equation (20) is of the form 

~) + w2( t)y = 0 .  (21) 

As x(t) is a periodic function with angular frequency (r and w2(t) is a function 
of x 2, w2(t) is a periodic function of angular frequency 2or. The problem reduces 
to the study of the stability of the equilibrium position of a parametric oscillator. 
This approach has already been used by Pfenniger (1987), in the case of models 
with figure rotation. Parametric excitation is studied in mechanics textbooks (for 
instance, Arnold 1976). When ~2(t) is a mere sine function of time, Equation (21) 
reduces to Mathieu's equation. The stability boundaries in the space of the param- 
eters (usually the frequency and the amplitude of the modulation) are determined 
by the characteristic values of Mathieu's equation. This equation has already been 
used in the study of stability of galactic orbits (Binney 1978 and Heiligman and 
Schwarzschild 1979). 

In the present case, w2(t) is not a sine function of t and Equation (21) is a Hill's 
equation. Nevertheless, if we use the known results about the classical parametric 
oscillator, we expect the existence, in the plane of the parameters (q, a), of a 
denumerable infinity of instability zones, touching the q-axis when w = k~r with k 
integer (no divisor 2 in our case as the modulation frequency of w 2 is 2cr), that is 
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for q = 1/k. In the following, we study the first two unstable zones, which arise, 
for small amplitudes, when q is close to 1 and 1/2 respectively. It is known that the 
width of the unstable zone is a decreasing function of k. Moreover, smaller values 
of q are of lesser interest for galactic dynamics. 

Let s = at.  Substituting for x(t) the expression obtained in the preceding 
section, Equation (21) becomes 

q2 d2y/ds2 + h(s)y = O, (22) 

where 

h(s) = 2f ' (1 + x2)/(r 2 . (23) 

We develop h(s) in series of e = a 2 and obtain an expression of the following 
form: 

h(s) = 1 + e(hlo + hll cos2s) + eZ(h20 + h21 cos2s + h22 cos4s ) 

+e3(h30 q- h31 cos 2s + h32 cos4s + h33 cos 68) + .." 

= H0 + H1 cos 2s + H2 cos 4s + H3 cos 6s + . ' .  , (24) 

where 

H0 
H! 

//2 
H3 

= 1 + Ehl0 -1- c2h20 q- E3h30 q- "'" -- 0 ( 1 ) ,  (25) 

= Chll q- e2h21 q- e3h31 q- . . . .  O(e ) ,  (26) 

---- E2h22 + E3h32 + ' "  = O(e 2) , (27) 

---- e3h33 + ' " =  O(e 3) . (28) 

We study Hill's equation in the same way as Mathieu's equation (see Ince 1956). 
When the point (q, a) is on a stability boundary, Equation (22) has a periodic 
solution which is either even or odd. Let ak denote a boundary corresponding to an 
even periodic solution and bk denote a boundary corresponding to an odd solution. 
This notation agrees with that used by Abramowitz and Stegun (1968) for the 
characteristic values of Mathieu's equation. The boundaries ak and bk touch the 
q-axis at q = 1/k. The angular frequency of a periodic solution is a i fk  is odd and 
2a if k is even. The justification of these statements are the same as that used in 
the study of Mathieu's equation (Ince 1956). In the following, the determination of 
the periodic solutions of Equation (22) will give us the boundaries al,  bl, a2 and 
b2. 

To determine the al-boundary, one seeks a periodic solution of the form 
O0 

y =  ~ yncos(2n + 1)s.  (29) 
n-~0  

We substitute this expression for y in Equation (22). It comes out 

Aklyt = 0 ,  (k = 0, 1, 2 , . . . ) ,  (30) 
/=0 
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with 

1 Akk = - ( 2 k  + 1)2q 2 + H0 + ~H2k+l (31) 

1 1 
Akt = ~HIk-t I + ~Hk+t+l , (k • I) . (32) 

We must now express that this system admits a non vanishing solution. In the case 
of Mathieu's equation, the system is tridiagonal and this condition may be written 
as the vanishing of a continued fraction. This process cannot be adapted to our 
case. Let D,~ be the determinant of the matrix A of the coefficients Akl with indices 
k, l _< n. We consider successively the equations 

D o = 0 , D 1  = 0 , . . .  , D n = 0 ,  (33) 

and we make the substitution 

q =  l + t S .  (34) 

Then these equations are solved for tS, the solutions being expressed as power series 
of e. It turns out that the solution of Dk = 0 coincide with the solution of Dt = 0 
with 1 > k up to order 2k + 1. This can be proved rigourously, but the proof is long 
and tedious. In fact, the success of this process rests on the fact that the elements 
of the matrix A are decreasing when moving away from the principal diagonal, 

Am = o(elk-q)  • (35) 

One proceeds in the same way for the other stability boundaries. We write only 
the major steps of the calculation. For the bvboundary, we have 

OO 

y --- ~ y,~ sin(2n + 1)8. (36) 
n = 0  

o o  

y ' ~ A k t y t = O ,  ( k = O ,  1 , 2 , . . . ) ,  
/=0 

(37) 

with 

1 Akk = - ( 2 k  + 1)2q 2 + H0 - gH2k+l , (38) 

1 1 
Akt = gHIk-t I - g H k + l + l  , ( k  # I) .  (39) 

For the a2-boundary, we write 

o o  

Y = ~ Yn COS 2 n s .  
n-=O 

(40) 
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o o  

AklYz = 0 ,  
/=0 

(k = 0, 1, 2 , . . . ) ,  (41) 

with 

A00 = 2H0 ,  
1/_/ Akk = -4q2k  2 + Ho + ~ 2k , (k > O) 

1 1 , (k l) Akt = ~//Ik-tl + gI-lk+t ~ • 

(42) 

(43) 

(44) 

We put 

1 q = ~ + ~ .  (45) 

Here, we have 

Do = 2 + O(E) 

and the characteristic equation cannot be solved for k = 
obtained from Dk = 0 gives the solution up to order 2k - 1. 

For the b2-boundary, 

o o  

Y = ~ Yn sin 2 n s .  
n = l  

(46) 

0. The power series 

(47) 

o O  

~ _ , A k l Y l = O ,  ( k = l ,  2 , . . . ) ,  
l= l  

(48) 

with 

l Akk = -4q2k  2 + / / 0  - ~H2k,  (49) 

1H 1 , ¢ t) .  (50) Akz = y I k - l l -  ~//k+t 

With ~f defined as in Equation (45), the power series obtained from Dk = 0 gives 
the solution up to order 2k - 1. 

At all orders, the al-boundary is given exactly by q = 1. This means that for q 
close to unity, orbits along the long axis are stable and orbits along the short axis 
are unstable, as it is well-known. For the other boundaries, we have obtained the 
expressions of q as power series up to the terms of order 18: 

q = q0 + q l e  d- q2 •2 d- q3 ~3 + q4E 4 -]- " ' "  • (51) 

As was expected, the second unstable zone is narrower than the first one: the width 
of the first zone is of the order of a 2 whereas the width of the second one is of the 
order of a 4. 
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Fig. 3. Unstable zones (shaded areas) for the motion along the z-axis in the plane of the parameters 
(q, a) ; (a) for potential 1/1; (b) for potential ½. 

Again, the power series are not of great practical use when the amplitude is not 
markedly smaller than unity. We obtain a satisfactory convergence if we express 
the series in terms of the energy and convert them into continued fractions: 

q = q~) q~E q~E q'3E q,~__E~ . . .  (52) 
1+ 1+ 1+ 1+ 1+ 

The results are shown in Figure 3. The first few terms, for both potentials, are 
given in the appendices. Figures 4 and 5 show the number of terms (not counting 
the term of order zero) necessary to obtain a given accuracy in q(a). 

5. The Organization of the Main Families of Orbits in the Plane 

The results obtained for x-axis orbits for q > 1 are now interpreted in terms 
of y-axis orbits with a shape parameter 1/q. For a y-axis orbit, a is no longer 
the amplitude and must be interpreted as a measure of the energy (the amplitude 
of a y-axis orbit is qa). This gives Figure 6, which differs from Figure 3 only 
by the drawing of the hi-boundary which separates regions of stability (below) 
and instability (above) of y-axis orbits. The different stability boundaries we have 
considered here determine six regions in the plane of the parameters. We use Roman 
numerals to number them. 
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f o r  p o t e n t i a l  V~. 

Miralda-Escud6 and Schwarzschild (1989) have studied motions along the axes 
in a logarithmic potential with notations slightly different of  ours. Their parameter 
b is the same as our q and their parameter Rc decreases as our a increases. Their 
bifurcation diagrams (their Figures 6 and 7) show, for fixed q values, the appearance 
of  instabilities of  the axis orbits and the simultaneous appearance of  new orbit 
families. 

Our results are similar. As only stable periodic orbits can parent a family of  
orbits, the partition of  the plane (q, a) according to the stability properties of  axis 
orbits also corresponds to different organizations of  the orbits in the (z,  y)-plane 
into main families. New families of  orbits appear when we cross the stability 
boundaries of  Figure 6. Table I shows, for the six regions, the stability of  the axial 
orbits and the main families of  orbits. We use the notation B for the box orbits, 
whose parents are the stable axis orbits. When necessary, we add the index z or y 
to indicate the parent orbit. The banana orbits are marked Ba, they appear when the 
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Fig. 5. Number of terms of the continued fractions necessary to achieve a given accuracy in q(a) 
for potential ½. 

z-axis orbit loses its stability. The loop orbits are marked L and appear when the 
//-axis orbit loses its stability. Finally in regions V and VI there exists a region of  
phase space occupied by box and boxlets that we have designated as B t. The same 
notations have been used in Figures 6 to 11. They show Poincar6 sections (z = 0), 
computed numerically, for values of the parameters chosen in the six regions. 

The narrowing of the stability domains as the energy increases is linked to 
the disappearance of box orbits in potential V1 observed by Miralda-Escud6 and 
Schwarzschild (1989) as E ~ oo (as -Re ~ 0 in their notations). This disappear- 
ance of the box orbits does not seem to be linked to a particular form of the potential 
(de Zeeuw and Pfenniger 1988, Lees and Schwarzschild 1992). 
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Fig. 6. The stability boundaries divide the plane of the parameters (q, a) into six regions ; (a) for 
potential Vi ; (b) for potential V2 
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Poincar6 section z = 0 for potential ~ and (q, a) chosen in region I. 
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TABLE I 

The -t- o r -  signs indicate stability or instability 
respectiveley of the axial orbits. Refer to the 
text for the description of the main families of 
orbits. 

Zone x-orbit y-orbit Main families 

I + + B 

II - -t- By, Ba 
III + + B~, By, Ba 
IV + - Bx, L 
V - - Ba, L,B' 
VI + - B~,  Ba, L, B' 

1.5 ' ' ; ' l ~ ' ' ' I ' ' t , 

- I I  

q = 0 . 6  

~/ a = 2 . 2 5  

1 . o  

0.5 
- ~ \ ', y \ \ \ \ \ \ 

o ) !  ? / )  
o . o  o . 5  1 .o y .5 

Fig. 8. Poincar6 section x = 0 for potential V1 and (q, a) chosen in region II. 

6. C o n c l u s i o n s  

The instabili ty of  axial orbits when their frequencies are close to resonances is o f  
the same nature as the parametric  instability, well studied in mechanics  textbooks.  
We have shown that the boundaries of  this instability in the space of  the parameters  
(the ellipticity and the energy) can be entirely determined by analytical methods.  
In principle, the power  series developments  used in this work  can be ca rded  
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Fig. 9. Poincar6 section z = 0 for potential 171 and (q, a) chosen in region III. 
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Poincar6 section z = 0 for potential Vl and (q, a) chosen in region IV. 

out up to an arbitrary order. They are only limited by the available computing 
power. An elementary summation process (change of variables and transformation 
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F ig .  12. P o i n c a r 6  s e c t i o n  z = 0 f o r  p o t e n t i a l  171 a n d  (q ,  a )  c h o s e n  in  r e g i o n  V I .  

into continued fractions) allows the use of the analytical results well beyond the 
relatively narrow domain of convergence of the power series. 
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Of course, the analytical method is limited to the study of analytical potentials. 
And it requires a computer as numerical computation does. We insist on the sim- 
plicity of the analytical method used in this work. Future investigations will tell us 
if this method can be used in more complex situations. 

The knowledge of the stability of axial orbits allows the partition of the space 
of parameters (q, a) in regions corresponding to different organizations of the main 
families of orbits in the (zy)-plane. Only the existence of the main families, parent- 
ed by axial orbits (box orbits) or stemming from their instability (banana orbits and 
loop orbits) can be localized in the parameter space. Families stemming from fur- 
ther bifurcations escape our analysis. The same approach for the three-dimensional 
problem should provide the same type of information about the organization of the 
main families in three-dimensional space. However, the parameter space would be 
three-dimensional (energy and two ellipticity parameters) and the results would be 
more difficult to visualize. 
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Appendix 

A. Potential I11 

In this appendix, we give the expressions obtained for the logarithmic potential 
Vl(z, y) described by Equation (2). As the writing of the coefficients becomes 
rapidly cumbersome as the order increases, we truncate the expressions and tables 
at relatively low orders. 

F(z) = - z  3 + z 5 - z 7 + z 9 - x 11 + x 13 . . . .  (53) 

1 1 2  1 3  81_E4 + 1 5  1 6  E = 2 C - ~ E  + ~ E  - ]--dE - i ~ E  + . . .  (54) 

4 3 4 5 4 6  E = 2E + 2E 2 + E 3 + /~4 _]_ .~ /~  ..~ ~.~/~ .~_ "~-8/~7315 + "'" (55) 

3 5 9 2  3 3 7 3  99745 E4 
tr = 1 - ~E + 2--~E 2--0-~ E + 786432 

3 2 2 4 4 2 3 5  2584273016  1374782873E7 
-31457280 ~ + 3019898880 E ~ + . . .  (56) 
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( 1  1 ) e2(  59 1 
x / a  = c o s s + e  coss -~-~cos38  + -3---6~-~coss+~-~cos3s 

11 "~ e3 ( 1313 149 15 
+ 3---6~-~ cos 58] + k ~  cos 8 1638----4 c°s 38 - - c°s584096 

59 ) e4(  234967 18229 cos38 
9830~ cos 78 + 23592960 cos 8 + 314572----~ 

4901 cos58+ 547 cos7s+ 1903 cos 9 8 ' / + . . .  (57) 
-t 157286------4 58982------~ 15728640 / 

The coefficients of the continued fraction describing a as a function of  E are given 
in Table II. 

TABLE II 
Coefficients of the continued frac- 
tion giving a, Equation (15). 

! i ~i 

1 3/4 
2 -25/48 
3 41/240 
4 -693/3280 
5 18769/108240 
6 -174373/1519056 
7 3233205943/14683057200 

h = 

qbl 

( 1 1  ) e z ( 9 1  5 ) 
l + e  - ~ c o s 2 s  + - ~ + ~ c o s 2 8 + ~ c o s 4 s  

( 5 5  335 ~ 313 ) 
+e3 1536 614----4 cos 28 - cos 48 6 ~  cos 68 

8839 239 353 537 
+e4 39321-----~ + ~ - ~  cos 28 + ~ cos 48 + ~ cos 68 

277 8 ~ +16--g cos 8) +. . .  

1 4 1 3  192975 
1 + ~ e -  3 e 2  + ~-6-- ~ e 821~2 e4 -b 73--~-~-0 ¢ 

_ 5733503 E6 3098381807 e7 
283115520 + 1 ~ 0  . . . .  

(58) 

(59) 
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TABLE III 
Coefficients of the continued 
fraction giving q(E), for the 
hi-boundary, Equation (52). 

i q~ 

0 1 
I - 1 / 2  
2 1/4 
3 -1/6 
4 31/96 
5 -391/4960 
6 33974/181815 
7 -262826339/2975578816 

TABLE IV 
Coefficients of the continued fraction giving q(E), for 
the a2-boundary, Equation (52). 

i q~ 

0 1/2 
I - 1 / 4  
2 7/48 
3 -109/336 
4 11629/36624 
5 -31875431/304214640 
6 2852486221567/12709007557680 
7 -151507989929326679/817143405960019056 

qa2 
1 1 43 2 209 E3 167849 E4 5062619 E5 

+ i--6 E -  1 - ~  E + ~ - 14155776 + 5662--6-~0 
2313264119 E6 106474807777 ~7 

- 326149079040 + 1 ~ 0  . . . .  
(60) 

1 1 55 ¢2 301 3 258905 E4 8154379 E5 
qb2 = ~ + "i"~ E 15-36 + 12"i'~-8 E -- 14155776 + 5 ~ 0  

766778089 E6 179892123427 E7 
-65229815808 + l ~ ( J  . . . .  

(61) 
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TABLE V 

Coefficients of the continued fraction giving q(E), for the 
b2-boundary, Equation (52). 

i q~ 

o 1/2 
1 - 1 / 4  
2 19/48 
3 -181/912 
4 36865/165072 
5 -144182963/1601415600 
6 5720036896171/67140693865200 
7 -39437947844746780235/80578629747458776752 

Tables III, IV and V give the coefficients of  the continued fractions describing q 
on the stability boundaries as functions of E.  

B. P o t e n t i a l  V2 

We now consider the potential V2(x, y) defined by Equation (3). We have obtained 
the following expressions. 

if(X)---- --1Z3+3X5--5Z7+.3-~5~X9--~6-~3~zll+ 231 2713 429 zl  5 
2 8 6 12t~ z~o ~ - 2048 + ' - -  (62) 

1 
= 2 e ge + 6 e3 - - -  + 2 -~  e 1024 2048 E - 8 e4 + . . . .  (63) 

e = 2E  + E 2 . (64) 

O" ----- 
3 99 E2 1025 E3 188955 E4 

1 - ] - ~ E  + 1024 16----~ ÷ 4194304 
2319273 e5 118774401 E6 _ 1567395747.E 7 + . . .  

- 6 7 1 0 8 8 6 4  + 4294967296 68719476736 
(65) 

1 ) 2(41 
:r/a = cos s + E cos s - ~ cos 3s + - 409-----6 cos 8 

9 5 ) E3 ( 1887 
+1---0-~cos38 + 4--0--~cos5s + \262144  c ° s s  
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747 265 119 \ 
- -  cos 3s - -  cos 5s - -  cos 7s ) 131072 196608 786432 

46369 67395 3s 31195 
+E4 838860-------~ cos s + 16777216 cos + 25165824 cos 5s 

3115 393 ) 
+ 12582912cos7s - t -  16777216 cos 9s + " "  (66) 

The coefficients of  the continued fraction describing cr as a function of  E are given 
in Table VI. 

TABLE VI 
Coefficients of the continued 
fraction giving ~r, Equation (15). 

1 3/8 
2 5/32 
3 13/96 
4 161/1248 
5 6083/47840 
6 404001/3197920 
7 197478759/1568343392 

TABLE VII 
Coefficients of the continued 
fraction giving q(E), for the 
b l-boundary, Equation (52). 

0 1 
1 - 1 / 4  
2 5/8 
3 1/20 
4 69/320 
5 -85/4416 
6 1874/391 
7 -133302503/36700416 
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TABLE v m  
Coefficients of the continued fraction giving q(E), for the 
a2-boundary, Equation (52). 

i q~ 

0 1/2 
1 - 1 / 8  
2 43/96 
3 59/4128 
4 -117001/243552 
5 966352975/662693664 
6 -258792295751497/1262112719196000 
7 3137849198471454849551/47315986738328227668000 

TABLE IX 
Coefficients of the continued fraction giving q(E), for the 
b2-boundary, Equation (52). 

i q~ 

0 1/2 
1 - 1 / 8  
2 79/96 
3 -157/7584 
4 292933/1190688 
5 941605661/4415086176 
6 1285176440343637/1675913140822560 
7 -70334480586313695557/2754846396618800691360 

) h = 1 + ~ cos 28 + E 2 - -  3 t- ~ COS 28 + 1 -~  COS 48 

( 113 829 ~ 219 .. "~ 
+E3 \ 4 0 9 6  16--~4 cos z8 - ~ cos 48 16---~ cos o s )  

38317 4205 7769 
+E 4 209715--------~+ 13107------~cos28 + 19660------~cos48 

2475 cos68  + 2701 ) 
13107---~ 78643--------'2 c ° s88  + "'" (67) 
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1 _ 7 e 2  67 £3 2941 4 
1 + ~e + + - -  

128 2048 ~ e  
_ 5222323 E6 810101701 e7 . . . .  

402653184 + 77309411328 

8721 e5 
524288 

(68) 

qa2 
1 1 7 9 e 2  239 E3 1087769 4 12504287 e5 

+ ~-~e 6144 + ~ - 226492416 e + 3 ~ 6  
54803269409 E6 694872636193 7 

- 20873541058560 + 3 ~ 6 0  e . . . .  
(69) 

qb2 = 
1 1 115 E2 427 £3 2224937 4 28199471 5 

+ ~ - ~ e -  6144 + 32768 - 226492416 E + 3 ~ 6  E 
133116169379 e6 1789448743963 E7 

- 2 0 8 7 3 5 4 1 0 5 8 5 6 0  + 3 ~ 0  . . . .  
(70) 

Tables VII, VIII and IX give the coefficients of the continued fractions describing 
q on the stability boundaries as functions of E. 
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