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Sobolev type line profiles
in case of wind density perturbations modulated
by non radial pulsations

par R. SCUFLAIRE et J.-M. VREUX (*)

Institut d’Astrophysique, Université de Liége
Avenue de Cointe 5, B-4200 Ougrée, Belgium

Summary. — We have studied the modifications induced on the P Cygni line
profiles of an outwards accelerating wind by density fluctuations modulated by non
radial pulsations.

1. INTRODUCTION

During the past few years, observations have drawn the attention on
the importance of non radial pulsations in massive stars and their possible
link with some characteristics of the mass loss of these objects [Abbott
et al., 1986]. Until now, detailed numerical simulations of the pertur-
bations of a line profile by non radial pulsations have been limited to
photospheric lines. This problem is relatively simple in the sense that it is
a two dimensional one: the observed variations are produced by the time
dependent pattern of the velocity field on the surface of the star.

Due to the growing evidence that a link between non radial pulsations
and mass loss variations could exist [Abbott et al., 1986] and also an
observational indication that a coupling between wind and photospheric
variations could indeed exist [Baade, 1986], we have decided to investi-

(*) Présentés par M. L. Houziaux.
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oscillations.
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gate the signature on P Cygni profiles of perturbations of the wind density
modulated by non radial pulsations. Until now, numerical simulations of
perturbations of P Cygni profiles by variations of the wind density have
been limited to cases where the perturbation is spherically symmetric [for
example, Prinja and Howarth, 1985] or axially symmetric [Rumpl, 1980].

We present here, a method to handle this problem when the wind has
no longer spherical nor axial symmetry. We have tackled the problem in
the frame of a linear theory. We start with a classical Sobolev type line
profile produced by a spherically symmetric wind accelerating outwards.
As a working hypothesis we assume that the density perturbations of the
wind have the same geometrical and temporal pattern as non radial
pulsations. The resultant variations of the line profile have been calculated
from the linearized equations of the problem. In this first attempt, we have
limited our investigations to only one model.

2. STATIONARY MODEL

A model of Castor and Lamers [1979] has been chosen as our station-
ary model. The expanding envelope is described by two functions, the
expansion velocity v(r) and the optical depth 7,4 (r), where ris the distance
from the centre of the star. In the adopted model, the expansion velocity
is given by

v="1,+ v, (1 - R/r)"?

where v, = 0.01 v,
v; =099 v,
R is the radius of the star
v, is the terminal velocity of the wind

This classical velocity law is an increasing function of r, so that the
Sobolev approximation may be used. This means that a photon going
through the envelope interacts with the absorbing ions at only one place
of its trajectory, located at a distance r from the center of the star, which
depends on the frequency of that photon.

The optical depth of the envelope, viewed by a photon moving radially

is given by
2 d -1
Trad = K fj'Oni <—U
mc dr

where f is the oscillator strength, A, the wavelength at rest of the
considered line, n, the density of the absorbing ions and dv/dr the velocity
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gradient. All these quantities are computed at the point » where the photon
under consideration interacts with matter. We have not tried to compute
the density of the ions from the ionization equilibrium. Instead, following
Castor and Lamers [1979], we have adopted for 1,,4(r) the law

Traa = C(1 = 0/0,,)
with C = 2.04.
Both adopted laws v(r) and 7,,4(r) correspond to the case #=1 of
figure 8B of Castor and Lamers [1979].
The profiles were computed using the method developed by Castor
(1970), neglecting desexcitation by collisions. We also made the approxi-

mation
B./B=W =[1-./1-(R/r)?2

Both approximations are justified by the preliminary character of the
present investigation and the arbitrariness of the laws v(r) and 7,4 (7). The
source function is given by S = W I where I is the intensity coming out
of the photosphere, assumed to be independent of the frequency in the
neighbourhood of the line. In a future work we plan to include in our
perturbation treatment a more accurate expression for the escape proba-
bility.

3. COMPUTATION OF THE PERTURBED PROFILE

As a working hypothesis we assume that the stellar oscillation affects
the wind only through a modulation of the density at the base of the wind
and has no effect on the velocity law. This last assumption is valid if the
wind is accelerated by optically thin lines: in that hypothesis the
acceleration of the denser regions will be the same as the quiet wind. In
this first approach of the problem, this simplifying hypothesis is necessary:
the use of non monotonic velocity laws and the study of shocks formation
are beyond the scope of the present paper. This hypothesis is also
supported by the following estimation of the ratio between the maximal
oscillation velocity v.,. and v . If o is the angular frequency of the
considered oscillation mode and AR the variation of the radius, we have

GM
vosc=O'AR=OCA—R T

where « is a numerical factor depending on the mode. For example, for
the modes found unstable by Noels and Scuflaire [1986], with periods
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around 4 hours, « is comprised between 1 and 1.7. If the approximative
relation between v_, and the escape velocity v, [Abbott, 1978] holds

s [2M
R

« AR

vosc/voo = 3 \/5 R

With o« = 1.5 and AR/R = 0.1, we obtain v /v., = 0.035. Hence, it is
reasonable to assume that the velocity of the base of the wind due to the
non radial pulsation has only a negligible effect on the main part of the
velocity curve of the wind.

In these conditions the density of the wind close to its base (specifically
close to the point where v = 0.01 v_) is written

pp(0’9 ¢,’ t) = ppO + 5pp(6/’ ¢I’ t)

where the index p indicates quantities close to the base of the wind, the
index 0 refers to unperturbed quantities and the prefix 0 refers to small
Eulerian (i.e. local) perturbations.

0p, (0", @', 1)lp,o = e+/4T Y}, (0", ¢ e

¢ is a small parameter
Y,, is a spherical harmonics of degree / that we write

we have

ezm¢’

Y, (0", ¢") = E

e+ nd-mt .
0,.(x)= ———2(1 ) P/(x) ifm=>=0

P/ (x) is an associated Legendre function. For negative m, ©,,(x) is
defined by

®,, (cosf")

with

0,,(x) = (- 1)m®1, _m(X)

', ¢’ are angular coordinates in an inertial system having its origin at the
center of the star and its z’ axis coinciding with the rotation axis of the
star.

o is the angular frequency of the considered oscillation mode. This fre-
quency depends on three integer indices /, m and k. The index k numbers
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the modes associated to the same / and m. When there is no rotation, o
does not depend on m and this frequency is (2/ + 1)-fold degenerated. Let
o, be the frequency when there is no rotation. When the rotation is not
too fast, the frequency is given by

0= 0, + fmQ
where Bis a factor often close to the unity and Q the angular velocity of
rotation [see Ledoux, 1951].

The equation of continuity allows us to follow the evolution of the
photospheric perturbation through the envelope.

0
g =0
R%y
r) = —2
Po(r) 0(r) Ppo

6p(rv 0” ¢’a t)/po(r) = 6pp(9,’ (Pl’ t- t,(r))/ppo

t'(r) is the time spent by an element of matter from the photosphere to
reach the point of coordinate r. The expression given by Prinja and
Howarth [1985] contains a mistake. The right expression is

,/(,)zj dr’ =5{(w1_—wm_mm(1_w)
X v, U (w —wo)R 2

+—2  In(+w)-

2ww? et wlw}
2(w, = W) (w, - W) Wo

with
w=J1=Rpr
Wo = Up/Uss
wy = 0;/v,
In the following, we shall omit the index 0 indicating unperturbed
quantities.
Let us choose another coordinate system Oxyz. The origin coincides

with the centre of the star, the z axis is pointing towards the observer and
the rotation axis of the star (Oz’ axis) lies in the Oxz plane. Let 0 and ¢
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be the angular coordinates associated with this system and 6, the angle
between the z and z’ axes (figure 1).

X

observer

0 z

FIG. 1. — Relative orientation of the axes. The y and y’ axes coincide and are orthogonal
to the plane of the figure.

Let us consider a ray propagating towards the observer. Let
p= \/x2 + »? be the distance between this ray und the centre of the star.

The intensity I(1) at the location of the observer is given by (Castor, 1970)
ILe ="+ S(1-e"7) i R
I(i)={ce S( .e ) ifp<
S(1-e77) ifp>R

where

l1+o
2Trad

1+ opu

dInv
o= -1
dilnr

u=zr
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All these quantities must be evaluated at the only point of the ray where
matter and radiation of wavelength A can interact. The flux received by the
observer is given by

27

F(2) = JJ I(4) dx dy = J pdpj I(2) d¢

Outside of the line, the flux is given by
F, = nR?I,

so that the flux in the line compared to the continuum has the following
expression

2n

1
F(A)/Fc——RdepJ ’“)d¢

The perturbed equations write

57/7 = 5T,0a/Teaa = Oplp

With our simplification in the computation of S, the perturbation of I(4)
is reduced to

SIAL, = 1,(1)dplp
with

W-1Dte ® ifp<R
L(4) = {( _,) .
Wte if p>R

SIAYL, = & /An T (A)Y (0, @' Yo iol ~t e

The perturbation of the flux can now be written

2¢ _ ,
O0F(A)/F, = Rz\/;rJ‘ pdp J L(A)Y,m(0', ¢ Ye i@l g
0 0 ’

Let us express the spherical harmonics Y,,,(6’, ¢’) in terms of spherical
harmonics in the 6, ¢ variables [see for instance, Nikiforov and Ouvarov,
1983]

Yp(0', ¢') = T Dl Y,(6, 9)
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The coefficients D’,,,. depend on the relative orientation of both axes
systems, i.e. of 6, in the present case.

When integrating on the ¢ variable, only the term with m’ = 0 gives a
non zero contribution. The coefficient D?, is given by

DL, = | ﬁ ®,, (cos by

SF(A)/F, = A(F,(A) cos ot + F,(4) sinot)

It comes

with
Al m, 0,) = £ /2 ©,, (cos 6,)
Fy(4, 0,1) =2 J 1,(A)P, (cos 0) cos [at'(r)] p dp/R*

0
o

Fy(4,0,1)=2 J I(A)P, (cos 0) sin[ot’ (r)] p dp/R?
0
We note that

op(r, 0, @)
p(r)

so that, for a favourable angle 6,, A is precisely equal to the left member
of the above relation.

max
0, ¢

=¢ \/7: max |®,,,, (cos 0)|

op(r, 6, ¢)
p(r)

The index m as well as the angle 6, between the line of sight and the
rotation axis appear only in a multiplicative factor in the expression of the
flux perturbation. So they influence only the strength of the perturbation
but not its shape. Figure 2 shows how is varying the ratio A(6,)/A,.x in
the case / = 2.

Note that in the linear theory developed above, the determination of
the perturbation of the line profile requires only about twice as much
computation as in the case of a stationary spherical wind, for a given value
of L.

mea;x |A(l, m, 0,)| = rrel’a}Px
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A((190)/Amc|x

(@]

0 /2 9,

F1G. 2. — The “visibility” factor of the perturbation as a function of the angle 6, between
the line of sight and the rotation axis of the star, for / = 2, m = 0 (solid line), m = 1 (dashed
line) and m = 2 (dotted line).

4. RESULTS AND DISCUSSION

In the computations described in the preceding section, the angular
frequency of the oscillation appears only through the dimensionless
variable a¢’(r). As anatural unit for ¢’ is R/v,, , it is convenient to introduce

the dimensionless parameter

o = Ra/v,,
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which measures the frequency of the stellar pulsation in a natural unit

associated with the wind.
Figure 3 shows the line profile of the unperturbed model. As usual, the

horizontal scale gives the wavelength measured from the center of the line,
with the half-width taken as unit.

AMAL, = (A= Ao)clAgv.,

N

FON/F

=1 0 AN/ AN
FI1G. 3. — The line profile F(1)/F, in the stationary, spherically symmetric case.
This profile differs slightly from that computed by Castor and Lamers
[1979], owing to the adopted simplified form of the source function.

Figures 4 to 8 show the perturbation of the flux dF(4)/F, at full ampli-
tude (A = 1), at different phases ¢ of the oscillation. Figures 4 to 6 show
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FIG.5.— 8F(A)/F, for I= 1, o=1and A = L.
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FI1G. 9. — The line profile F(A)/F, for I =2, = 0.5 and A = 0.5.
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the influence of / on the profile. Comparison of figures 6 to 8 shows the
influence of w. Let us note that, in the case of radial perturbation, near
the centre of the line, the perturbation of the flux in the red wing of the
absorption lags behind the perturbation in the emission component. The
reverse behaviour is observed in the non radial case. In the present state
of our computations, it is difficult to say if this must be interpreted as a
difference of signatures between radial and non radial perturbations or if
this behaviour is dependent on the particular chosen model.

Figure 9 shows the profile resulting from the addition of the pertur-
bation to the unperturbed profile. We have arbitrarily chosen the case

N

FN/F

SN————

~1 0 AN/AN
o
F1G. 11. — The line profile F(1)/F, resulting from an enhancement of the wind in the

equatorial plane (/ = 2, w = 0, A = 0.5; solid line), compared to the spherically symmetric case
(dashed line).
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=2, w=0.5and A = 0.5 to illustrate the type of profiles we obtain. As

presently our computations are made with only one velocity law and one

opacity law, we have not tried to reproduce a given observed profile.
At higher values of w, as displayed for example in figure 10 (/ = 2,

w=2, A=0.5) the perturbations sometimes give the impression of
moving absorption features superimposed to a more or less normal P
Cygni profile.

The above theory apply also to a stationary deformation of the wind.
It is described by w = 0. Figure 11 shows the perturbation and the profile
resulting from an equatorial enhancement of the wind (/ = 2, A = 0.5). The
comparison with the profiles computed by Rumpl [1980] must be very
cautious, as our theory is valid only for small perturbations.

As a conclusion, we may state that this first tentative to model the
variability of ultraviolet P Cygni line profiles of hot stars by a linear theory
is encouraging. In the near future we plan to include in our computation
of the perturbation a more exact form of the source function and to apply
the theory to different velocity and opacity laws. The fitting of computed
profiles to observed ones ought to enrich our knowledge of the structure
of the wind of mass losing hot stars exhibiting variability in their ultraviolet
P Cygni profiles.
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