NONRADIAL OSCILLATIONS OF SOLAR MODELS WITH AN INITIAL DISCONTINUITY IN HYDROGEN ABUNDANCE

A. Boury, R. Scuflaire, A. Noels, and M. Gabriel Institut d'Astrophysique Universite de Liege, Belgium

ABSTRACT

Solar models are calculated with low central hydrogen abundance. The stability of these models is investigated. The eigenspectrum is computed and compared with the SCLERA observations of solar oscillation.

INTRODUCTION

In an attempt to solve the solar neutrino problem, Faulkner, Da Costa and Prentice (1975) followed a suggestion of Prentice (1973) and constructed models of the sun in which the initial hydrogen content in a small central region was much smaller than that in the rest of the star. Although the models which give the observed solar luminosity at the present solar age yield neutrino fluxes that are too large, they are interesting because they exhibit oscillatory modes connected with the discontinuity in density that is associated with the discontinuity in chemical composition. Moreover, the possible observations of the oscillation spectrum of the sun by the SCLERA group (Brown, Stebbins and Hill 1976, 1978) could permit comparison between various solar models (Scuflaire et al. 1976; Christensen-Dalsgaard and Gough 1976; Hill and Caudell 1979).

2. MODELS AND OSCILLATION PERIODS

Following Faulkner, Da Costa and Prentice (1975), an evolutionary sequence was computed by the Henyey method of a 1 $\rm M_{\odot}$ star of heavy element abundance Z = 0.02 and of initial hydrogen abundance X = $\rm X_{\rm C}$ = 0.1 in the region m(r)/ $\rm M_{\odot}$ \(\leq 0.03 \) and X = $\rm X_{\rm S}$ elsewhere. The value of $\rm X_{\rm S}$ necessary to fit the luminosity at evolutionary age 4.7 x 10 $^{\rm 9}$ years to the present solar luminosity was found to be 0.7813. The evolutionary sequence was constructed with a ratio of mixing length \$2/H\$ to the pressure scale height equal to 1.5; this ratio had to be adjusted to 2.15 in order to match the present value of the solar radius to within less than 1 percent. A second sequence with $\rm X_{\rm C}$ = 0 for m(r)/ $\rm M_{\odot}$ \(\leq 0.03 \) and $\rm X_{\rm S}$ = 0.794 elsewhere was also calculated. The behavior of the models of this second sequence being qualitatively the same as that of the models with $\rm X_{\rm C}$ = 0.1, no precise adjustments of $\rm X_{\rm S}$ and \$2/H\$ were made to

achieve a precise fit with the present sun.

The properties of the models tested for vibrational instability are listed in Table 2 where x_D , x_{Di} and x_{DO} respectively represent the non-dimensional distance of the discontinuity to the center of the star and the hydrogen abundance on the inner and outer sides of the discontinuity. Models 1, 2, 3, 7, and 8 correspond to the approach to the main sequence; Model 6 corresponds to the present sun.

The integration of the fourth order differential system of nonradial adiabatic oscillations was then performed following the scheme given in Boury et al. (1975). The fourth column of Table 2 gives the periods of the modes g_1 through g_5 for the horizontal wavenumber $\ell=1$. In the fourth column of Table 3, we list for $\ell=1$ to 10 the periods of the modes associated with the discontinuity in density. These modes have a very large amplitude in a narrow layer centered on the discontinuity. With respect to solar seismology, Table 4 provides a list of periods of Model 6 corresponding to the present sun; this allows for a comparison with the SCLERA periods. It is immediately seen that the predicted spectrum is much more compact than the observed spectrum. This compactness comes from the high central condensation of the star due to the very low central abundance of hydrogen. In the present state of observations, models with the assumed distribution of hydrogen do not pass the test of solar seismology.

3. VIBRATIONAL STABILITY

The damping coefficient $\sigma'_{k,\ell}$ relative to the k mode associated with the ℓ th harmonic is written, as usual, in the following form (Boury et al. 1975):

$$\sigma_{k,\ell}^{I} = -\frac{1}{2} \left[\frac{\int_{0}^{Ma} \left(\frac{\delta T}{T}\right)_{k,\ell} \delta \epsilon \ dm - \int_{0}^{Ma} \left(\frac{\delta T}{T}\right)_{k,\ell} \delta \left(\frac{1}{\rho} \ div \ \overrightarrow{F}\right) dm + \int_{0}^{Ma} \left(r_{3} - \frac{5}{3}\right) \frac{\delta \rho}{\rho} \delta \left(\epsilon_{2} + \frac{1}{\rho} \cancel{V} \cdot \cancel{V} p\right) dm}{\sigma^{2} \int_{0}^{M} \left|\underline{\delta r}\right|^{2} \ dm} \right]_{k,\ell}$$

$$= -\left[\frac{E_{N} - E_{F} + E_{2}}{2\sigma^{2} \int_{0}^{M} \left|\underline{\delta r}\right|^{2} \ dm} \right]_{k,\ell}$$
(1)

where all the terms are expressed in terms of the adiabatic solution. The third integral in equation (1) expresses the influence of the mechanical effects of convection. \vec{V} is the mean velocity of turbulence and ϵ_2 stands for the rate per unit mass of dissipation of turbulent kinetic energy into heat (Ledoux and Walraven 1958; Gabriel et al. 1975). All other symbols have their usual meaning. Table 2 gives the

Table 1. Properties of the Models a) Sequence $X_c = 0.1$, $X_s = 0.7813$

Model Number	н/ъ	Age (years)	×	X	×	<u> </u>		_	
			0	ru	no	ن	υ O	1	ρ _C / _P
1	1.5	4.44(7)	0.06150	0.09987	0.7796	1.392(7)	290.8	2.637(33)	168 3
2	1.5	4.98(7)	0.06508	0.09983	0.7791	1.374(7)	295.9	2.612(33)	170.4
က	1.5	5.75(7)	0.06514	0.09978	0.7785	1.358(7)	302.3	2.622(33)	175.4
4	1.5	8.68(8)	0.05720	0.09640	0.7182	1.343(7)	346.3	2.840(33)	220.3
2	1.5	4.70(9)	0.04652	0.07604	0.4190	1.509(7)	471.9	3.750(33)	419.1
9	2.15	4.70(9)	0.04977	0.07582	0.4168	1.513(7)	472.5	3.809(33)	342.1
			Q q		Sequence $X_c = 0$, $X_s = 0.794$	0.794			
7	1.5	4.83(7)	0.05736	•	0.7919	1.275(7)	507.4	2,546(33)	302.2
8	1.5	5.63(7)	0.06268		0.7911	1.275(7)	506.2	2.576(33)	300.3
6	1.5	9.03(8)	0,05152	i	0.7234	1.282(7)	543.3	2 703(33)	351.6
10	1.5	2.50(9)	0.04809	ī	0,5951	1.334(7)	589.2	2.994(33)	429.0

Table 2. Periods of Adiabatic Oscillation and Vibrational Stability Results: g-modes of ℓ = 1

Mode	Model	ω2	P(s)	EN	E _F	E_{ε_2}	σ' ⁻¹ years*
			a) Sequence	$x_{c} = 0.1,$	$X_s = 0.7813$		
9 1	1	7.8780	3.222(3)	6.621(33)	2.005(37)	6.702(36)	3.617(5)
	2	7.8665	3.217(3)	7.055(33)	1.845(37)	6.676(36)	1.728(5)
	3	7.8640	3.230(3)	7.551(33)	1.839(37)	6.132(36)	1.655(5)
	4	7.9046	3.360(3)	1.425(34)	2.267(37)	7.793(36)	1.627(5)
	5	12.696	3.144(3)	5.622(35)	4.512(36)	9.943(35)	9.657(5)
	6	10.425	3.133(3)	5.143(35)	3.720(36)	7.724(35)	1.031(6)
g ₂	1	3.2561	5.012(3)	4.805(35)	1.260(36)	1.414(31)	1.080(6)
	2	3.5710	4.774(3)	4.082(35)	1.222(36)	1.278(31)	1.139(6)
	3	3.9404	4.562(3)	3.436(35)	1.204(36)	1.412(31)	1.185(6)
	4	5.8776	3.912(3)	1.818(35)	1.246(36)	5.114(32)	1.289(6)
	5	10.754	3.416(3)	5.943(35)	6.990(36)	2.263(36)	4.350(5)
	6	8.9907	3.374(3)	4.383(35)	8.810(36)	2.953(36)	3.979(5)
93	1	2.1934	6.107(3)	2.070(35)	2.123(35)	1.497(33)	1.129(9)
	2	2.2158	6.061(3)	2.243(35)	2.205(35)	4.203(33)	-6.698(7)
	3	2.2795	5.998(3)	2.466(35)	2.311(35)	3.963(33)	-3.576(7)
	4	3.3686	5.167(3)	4.163(35)	3.769(35)	8.044(33)	-1.719(7)
	5	7.9828	3.965(3)	4.918(34)	3.789(37)	1.202(37)	6.913(4)
	6	7.5896	3.672(3)	1.267(35)	1.708(37)	6.405(36)	1.726(5)
94	1 2 3 4 5	1.3049 1.3302 1.3971 2.0993 5.0533 4.1532	7.917(3) 7.823(3) 7.662(3) 6.545(3) 4.984(3) 4.964(3)	2.148(35) 2.022(35) 1.563(35) 7.504(34) 3.404(35) 3.044(35)	2.775(35) 2.912(35) 8.474(35) 1.308(36) 1.077(36) 7.788(35)	1.497(33) 1.523(33) 5.851(32) 1.104(32) 9.896(34) 3.196(34)	5.712(6) 4.067(6) 5.277(5) 4.267(5) 1.791(6) 2.274(6)
9 5	1	1.1075	8.594(3)	1.913(35)	1.175(36)	1.008(31)	2.912(5)
	2	1.2376	8.110(3)	1.553(35)	1.154(36)	4.795(31)	3.214(6)
	3	1.3607	7.764(3)	1.674(35)	5.898(35)	9.837(32)	8.492(5)
	4	1.9029	6.875(3)	1.419(35)	2.713(35)	3.585(33)	3.791(6)
	5	4.4616	5.3040(3)	1.615(35)	2.424(36)	4.345(33)	4.431(5)
	6	3.6414	5.301(3)	1.424(35)	2.147(36)	1.499(33)	4.363(5)

^{*} A negative signs means instability.

Table 2. Cont.

Mode	Mode1	ω ²	P(s)	E _N	E _F	E _{e2}	σ' ⁻¹ years*
			b) Seque	nce $X_c = 0$,	$x_s = 0.794$		
91	7	12.016	2.645(3)	8.246(33)	1.420(33)	1.120(33)	2.179(6)
	8	11.501	2.700(3)	9.665(33)	1.587(37)	6.319(32)	1.876(6)
	9	13.506	2.602(3)	1.229(34)	1.850(36)	4.443(33)	1.840(6)
	10	16.174	2.522(3)	2.259(34)	2.024(36)	7.014(34)	2.009(5)
g ₂	7	7.8233	3.280(3)	9.341(33)	1.125(37)	6.111(36)	3.772(5)
	8	7.8062	3.278(3)	1.022(34)	1.739(37)	5.568(36)	1.690(5)
	9	7.8625	3.411(3)	2.077(34)	1.775(37)	6.621(36)	3.131(5)
	10	8.1235	3.559(3)	1.738(35)	2.059(37)	6.793(36)	1.436(5)
93	7	4.6159	4.272(3)	2.205(33)	1.600(36)	2.180(31)	7.385(5)
	8	4.3704	4.380(3)	2.927(33)	1.652(36)	3.393(31)	6.805(5)
	9	5.1462	4.216(3)	1.169(34)	2.061(36)	6.063(32)	6.271(5)
	10	6.9676	3.843(3)	5.438(35)	3.287(36)	9.102(35)	9.375(5)
94	7	2.4960	5.808(3)	4.135(33)	4.497(35)	3.301(33)	2.040(7)
	8	3.0155	5.273(3)	5.231(35)	4.776(35)	2.856(33)	-1.617(7)
	9	4.3921	4.564(3)	5.694(35)	5.628(35)	1.355(34)	-4.828(7)
	10	6.1229	4.100(3)	1.723(34)	1.897(36)	4.739(33)	4.449(5)
95	7	2.3755	5.953(3)	2.503(33)	1.536(36)	2.708(33)	4.021(5)
	8	2.2827	6.063(3)	8.904(32)	1.813(36)	1.128(31)	3.232(5)
	9	2.6827	5.839(3)	8.637(32)	2.203(36)	2.045(31)	3.037(5)
	10	3.3025	5.582(3)	2.358(35)	6.273(35)	9.362(33)	4.030(5)

^{*} A negative signs means instability.

Table 3. Periods of Adiabatic Oscillations and Vibrational Stability :

Discontinuity Modes

a) Model 1

1	Mode	ω ²	P(s)	E _N	E _F	E _R (D)	E _e 2	σ-1 years
1	p ₁	18.605	2.097(3)	6.094(34)	2.289(38)	8.775(34)	7.990(37)	4.901(4)
	P ₂	21.825	1.936(3)	5.488(34)	3.998(38)	1.270(35)	1.462(38)	3.008(4)
2	P ₄	69.615	1.084(3)	6.168(35)	9.731(37)	1.390(36)	3.886(37)	3.117(5)
3	P ₅	113.65	8.483(2)	1.002(36)	1.788(38)	3.554(36)	7.882(37)	2.958(5)
4	p ₆	156.63	7.227(2)	1.228(36)	7.506(37)	6.573(36)	2.386(37)	6.099(5)
5	P ₇	198.64	6.417(2)	1.389(36)	8.889(37)	1.058(37)	1.830(37)	8.939(5)
6	P ₇	240.26	5.835(2)	1.506(36)	1.726(37)	1.556(37)	5.971(35)	4.209(6)
7	P ₈	282.13	5.384(2)	1.651(36)	2.006(37)	2.099(37)	1.187(34)	4.097(6)
8	p ₉	323.45	5.029(2)	1.732(36)	2.949(37)	2.762(37)	4.970(35)	3.195(6)
9	p ₉	364.68	4.736(2)	1.800(36)	3.431(37)	3.513(37)	1.800(31)	3.022(6)
10	p ₁₀	405.86	4.489(2)	1.858(36)	4.427(37)	4.352(37)	1.435(35)	2.601(6)
				b)	Model 8			
1	P ₂	260.54	1.794(3)	1.013(35)	3.035(38)	2.280(33)	1.179(38)	3.150(4)
2	p ₅	119.35	8.382(2)	6.820(35)	6.243(39)	3.190(35)	2.313(39)	7.852(3)
4	p _g	277.24	5.500(2)	1.714(36)	5.922(39)	3.121(36)	1.714(39)	1.781(4)
8	p ₁₃	573.71	3.823(2)	2.729(36)	2.801(39)	1.774(37)	7.096(34)	6.342(6)

Table 4.

1=2	1=4	1=6	1=8	Observed
70.7 (g ₆)		71.1		
61.2 (g ₅)	67.3 (g ₁₁) 64.7 (g ₁₀) 62.9 (g ₉)	67.4 (g ₁₆) 65.2 (g ₁₅) 61.3 (g ₁₄)		66.25
59.4 (g ₄) 51.3 (g ₃)	56.2 (g ₈) 53.0 (g ₇)	58.9 (g ₁₃) 57.6 (g ₁₂) 56.5 (g ₁₁) 51.8 (g ₁₀) 51.1 (g ₉)	59.1 (g ₁₇) 55.2 (g ₁₆) 55.0 (g ₁₅) 52.9 (g ₁₄) 51.1 (g ₁₃)	
44.8 (g ₂)	49.6 (g ₆) 43.8 (g ₅) 41.5 (g ₄)	46.3 (g ₈) 42.8 (g ₇) 42.0 (g ₆)	49.6 (g ₁₂) 48.5 (g ₁₁) 45.5 (g ₁₀) 44.2 (g ₉) 42.0 (g ₈)	44.66
39.1 (g ₁) 35.5 (f) 32.7 (p ₁)	38.4 (g ₃) 36.6 (g ₂)	37.1 (g ₅) 34.9 (g ₄) 34.3 (g ₃)D 31.3 (g ₂)	38.0 (g ₇) 37.6 (g ₆) 33.1 (g ₅) 31.4 (g ₄) 31.3 (g ₃)	39.00 32.1
25.4 (p ₂) 20.8 (p ₃)	29.9 (g ₁) 28.1 (f) 27.9 (p ₁) 22.3 (p ₂)	26.5 (g ₁) 25.3 (f) 24.7 (p ₁) 20.3 (p ₂)	28.3 (g ₂) 24.7 (g ₁) 23.3 (f) 23.2 (p ₁)	28.7 24.8 21.0
17.6 (p4) 16.3 (p5)D 15.3 (p6) 13.5 (p7) 12.1 (p8) 11.0 (p9) 10.1 (p10)	18.5 (p3) 15.9 (p4) 14.0 (p5) 12.8 (p6) 11.4 (p7)D 11.3 (p8) 10.3 (p9)	17.1 (p3) 14.8 (p4) 13.1 (p5)	18.8 (p2) 16.0 (p3) 13.9 (p4) 12.4 (p5) 11.1 (p6) 10.2 (p7)	19.5 13.3 12.1 11.4 10.7
	70.7 (g ₆) 61.2 (g ₅) 59.4 (g ₄) 51.3 (g ₃) 44.8 (g ₂) 39.1 (g ₁) 35.5 (f) 32.7 (p ₁) 25.4 (p ₂) 20.8 (p ₃) 17.6 (p ₄) 16.3 (p ₅)D 15.3 (p ₆) 13.5 (p ₇) 12.1 (p ₈) 11.0 (p ₉)	70.7 (g ₆) 61.2 (g ₅) 67.3 (g ₁₁) 64.7 (g ₁₀) 62.9 (g ₉) 59.4 (g ₄) 56.2 (g ₈) 51.3 (g ₃) 53.0 (g ₇) 44.8 (g ₂) 49.6 (g ₆) 43.8 (g ₅) 41.5 (g ₄) 39.1 (g ₁) 38.4 (g ₃) 35.5 (f) 36.6 (g ₂) 32.7 (p ₁) 25.4 (p ₂) 29.9 (g ₁) 20.8 (p ₃) 28.1 (f) 27.9 (p ₁) 22.3 (p ₂) 17.6 (p ₄) 18.5 (p ₃) 16.3 (p ₅)D 15.9 (p ₄) 15.3 (p ₆) 14.0 (p ₅) 13.5 (p ₇) 12.8 (p ₆) 12.1 (p ₈) 11.4 (p ₇)D 11.0 (p ₉) 11.3 (p ₈)	70.7 (g ₆) 61.2 (g ₅) 67.3 (g ₁₁) 64.7 (g ₁₀) 65.2 (g ₁₅) 62.9 (g ₉) 61.3 (g ₁₄) 59.4 (g ₄) 51.3 (g ₃) 53.0 (g ₇) 56.5 (g ₁₁) 51.8 (g ₁₀) 51.1 (g ₉) 44.8 (g ₂) 49.6 (g ₆) 43.8 (g ₅) 41.5 (g ₄) 42.0 (g ₆) 39.1 (g ₁) 38.4 (g ₃) 37.1 (g ₅) 34.3 (g ₃) 35.5 (f) 36.6 (g ₂) 34.9 (g ₄) 32.7 (p ₁) 34.3 (g ₃) 25.4 (p ₂) 29.9 (g ₁) 20.8 (p ₃) 28.1 (f) 27.9 (p ₁) 22.3 (p ₂) 20.3 (p ₂) 17.6 (p ₄) 18.5 (p ₃) 17.1 (p ₃) 16.3 (p ₅)D 15.9 (p ₄) 15.3 (p ₆) 14.0 (p ₅) 13.1 (p ₅) 13.5 (p ₇) 12.8 (p ₆) 11.0 (p ₉) 11.3 (p ₈) 10.1 (p ₁₀) 10.3 (p ₉)	$ 70.7 \ (g_6) \qquad \qquad 71.1 $ $ 61.2 \ (g_5) \qquad 67.3 \ (g_{11}) \qquad 67.4 \ (g_{16}) \qquad 64.7 \ (g_{10}) \qquad 65.2 \ (g_{15}) \qquad 62.9 \ (g_9) \qquad 61.3 \ (g_{14}) $ $ 59.4 \ (g_4) \qquad 56.2 \ (g_8) \qquad 58.9 \ (g_{13}) \qquad 59.1 \ (g_{17}) \qquad 57.6 \ (g_{12}) \qquad 55.2 \ (g_{16}) \qquad 66.5 \ (g_{11}) \qquad 55.0 \ (g_{15}) \qquad 51.8 \ (g_{10}) \qquad 52.9 \ (g_{14}) \qquad 51.1 \ (g_9) \qquad 51.1 \ (g_{13}) $ $ 44.8 \ (g_2) \qquad 49.6 \ (g_6) \qquad 46.3 \ (g_8) \qquad 49.6 \ (g_{12}) \qquad 42.0 \ (g_6) \qquad 45.5 \ (g_{11}) \qquad 41.5 \ (g_4) \qquad 42.0 \ (g_6) \qquad 45.5 \ (g_{11}) \qquad 44.2 \ (g_9) \qquad 42.0 \ (g_8) $ $ 39.1 \ (g_1) \qquad 38.4 \ (g_3) \qquad 37.1 \ (g_5) \qquad 38.0 \ (g_7) \qquad 35.5 \ (f) \qquad 36.6 \ (g_2) \qquad 34.9 \ (g_4) \qquad 37.6 \ (g_6) \qquad 32.7 \ (p_1) \qquad 34.3 \ (g_3) p \qquad 33.1 \ (g_5) \qquad 31.3 \ (g_2) \qquad 31.4 \ (g_4) \qquad 31.3 \ (g_3) $ $ 25.4 \ (p_2) \qquad 29.9 \ (g_1) \qquad 26.5 \ (g_1) \qquad 28.3 \ (g_2) \qquad 20.8 \ (p_3) \qquad 28.1 \ (f) \qquad 25.3 \ (f) \qquad 24.7 \ (g_1) \qquad 27.9 \ (p_1) \qquad 24.7 \ (p_1) \qquad 23.3 \ (f) \qquad 27.9 \ (p_1) \qquad 24.7 \ (p_1) \qquad 23.3 \ (f) \qquad 22.3 \ (p_2) \qquad 20.3 \ (p_2) \qquad 23.2 \ (p_1) $ $ 17.6 \ (p_4) \qquad 18.5 \ (p_3) \qquad 17.1 \ (p_3) \qquad 18.8 \ (p_2) \qquad 16.3 \ (p_5) p \qquad 15.9 \ (p_4) \qquad 14.8 \ (p_4) \qquad 16.0 \ (p_3) \qquad 15.3 \ (p_6) \qquad 12.8 \ (p_6) \qquad 12.4 \ (p_5) \qquad 12.1 \ (p_8) \qquad 11.4 \ (p_7) p \qquad 11.1 \ (p_6) \qquad 11.1 \ (p_6) \qquad 11.1 \ (p_6) \qquad 11.1 \ (p_6) \qquad 10.2 \ (p_7) $

Periods (in minutes) of model 6 ("present sun") for radial (1=0) and non-radial (1=2,4,6,8) modes. The identification of the modes is given in parentheses. D indicates a discontinuity mode. Last column gives solar periods observed by Brown et al. (1978) in the range 10m-70m.

values of E_N , E_F , E_2 , and the e-folding time $1/\sigma'$ for the low order g modes corresponding to $\ell=1$. A negative sign for $1/\sigma'$ means instability and growth of the oscillation amplitude. For the models with $X_C=0.1$, the g_3 mode becomes unstable in the approach to the main sequence in Model 2 close to the temporary minimum in the ratio ρ_C/ρ , due to the slight expansion of the central regions accompanying the onset of nuclear reactions. The instability subsists more than 10^9 years, until the central condensation has reincreased enough to produce a corresponding increase in amplitude in the envelope which is large enough to damp the oscillation. The "present sun" is stable. The differences in the results for Models 5 and 6 are due to the difference in radii of the two models, the large difference in their ratios of ℓ_C/ρ , and from the high sensitivity of the eigenvalues and eigenfunctions to ρ_C/ρ .

In the sequence $X_C=0$, the instability appears in the g_4 mode. Let us recall here that in the standard solar evolution of models less condensed than the present ones, a phase of instability towards the g_2 and g_3 modes occurs (Boury et al. 1975). The modes associated with the discontinuity turn out to be very stable (Table 3). The destabilizing effect of the nuclear energy term is largely overcome by the large perturbation of the temperature gradient, which appears as the radial part $\frac{d\delta L}{dm}$ of the term $\delta\left(\frac{1}{\rho}\operatorname{div}\vec{F}\right)$. The seventh column of Table 3 shows the contribution $E_R^r(D)$ of the discontinuity to the integral $\int \frac{\delta T}{T} d\delta L$. A steep change in density would have the same stabilizing effect as a strict discontinuity.

In conclusion, the evolution of the sun when starting with a small (or zero) hydrogen abundance in a small central region presents the same instability as the standard evolution towards low-order g nonradial modes for $\ell=1$; however, the spectrum of the model corresponding to the present solar age is not compatible with the observations.

REFERENCES

Boury, A., Gabriel, M., Noels, A., Scuflaire, R. and Ledoux, P. 1975, Astron. Astrophys., 41, 279.

Brown, T.M., Stebbins, R.T. and Hill, H.A. 1976, in Proceedings of the Solar and Stellar Pulsation Conf., Los Alamos, N. Mex., ed. A.N. Cox and R.G. Deupree, Los Alamos Report No. LA-6544-C, 1.

Brown, T.M., Stebbins, R.T. and Hill, H.A. 1978, Ap. J., 223, 234.

Christensen-Dalsgaard, J. and Gough, D.O. 1976, Nature, 259, 89.

Faulkner, D.J., Da Costa, G.S., and Prentice, A.J.R. 1975, Mon. Not. R. Astr. Soc., 170, 589.

Gabriel, M., Scuflaire, R., Noels, A. and Boury, A., 1975, Astron. Astrophys., <u>40</u>, 33.

Hill, H.A. and Caudell, T.P. 1979, Mon. Not. R. Astr. Soc., 186, 327.

Ledoux, P. and Walraven, T. 1958, Hdb. der Phys., 51, 353.

Prentice, A.J.R. 1973, Mon. Not. R. Astr. Soc., 163, 331.

Scuflaire, R., Gabriel, M., Noels, A. and Boury, A. 1976, Astron. Astrophys., $\underline{45}$, 15.