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Summary. The vibrational stability towards non-radial oscil-
lations of a 1M star with a low or zero initial hydrogen
abundance in the inner 3% of the mass, is studied. The star
becomes unstable at an age of 5107 yr. Stability is restored after
one and a half billion years. The star exhibits particular modes
associated with the discontinuity in density, which are strongly
damped.

The comparison between the predicted period spectrum of the
model corresponding to the present sun and the observations is
discussed.
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I. Introduction

In attempting to explain the low solar neutrino flux detected by
the Brookhaven experiment (Davis 1971, 1978) various non
standard models of the structure and the evolution of the Sun
were constructed by different authors departing, in one respect or
the other, from the usual assumptions of the theory of solar
evolution (for a review of these non standard models, see Rood
(1978) and Bahcall (1979). Among them (none of which is
satisfactory), we find the models built by Faulkner et al. (1975) in
which the initial hydrogen content inside a small central region of
the Sun is very much smaller than that in the outer layers. Some of
their evolutionary models produce low neutrino fluxes, but the
photon luminosity reaches the present solar value after a time
span much shorter than the age of the Sun. Other sequences yield
the right luminosity at present age but provide neutrino fluxes
higher than the standard model prediction which is about 5 SNU
(Bahcall, 1977). However the failure is not much worse than the
standard model’s. Moreover the Sun, in its standard evolution,
goes through a phase of vibrational instability towards non-radial
oscillations (Christensen-Dalsgaard et al., 1974; Boury et al,
1975; Shibahashi et al., 1975). Also the possible observation of the
oscillation spectrum of the Sun (Brown et al., 1976, 1978) raises
hopes to permit discrimination between various solar models,
through solar “seismology” (Scuflaire et al., 1975; Christensen-
Dalsgaard and Gough, 1976; Hill and Caudell, 1979). It is thus
interesting to study the non-radial oscillations of models of the
type constructed by Faulkner et al., all the more because these
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models will exhibit oscillatory modes connected with the discon-
tinuity in chemical composition. In Sect. II, the principal proper-
ties of the models investigated are described. In Sect. III and IV,
the non-radial oscillations and the stability of the models are
discussed.

II. Models

An evolutionary sequence of a 1M star of initial hydrogen
abundance X =X _=0.1 in the inner three per cent of the mass and
X =X_ in the rest of the star, and of heavy element abundance
Z=0.02, was computed by the Henyey method. The opacities
were obtained by interpolation in Cox and Stewart’s tables (1970).
The nuclear reaction rates were taken from Fowler et al. (1975).
The ratio I/H,, of the mixing length to the pressure scale height
was chosen equal to 1.5. X was adjusted to fit the luminosity at
evolutionary age 4.7 10° yr to the present solar luminosity. We
find X, =0.7813. The very slight difference between our X and the
value 0.790 given by Faulkner et al. (1975) arises from differences
in physical input and in the numerical codes. In order to reach the
present value of the solar radius within less than one percent, [/H,
was changed to 2.15 in the last models of the evolutionary
sequence.

Another evolutionary sequence with X =0 and X =0.794 was
also constructed. The qualitative behaviour of those models with
respect to non-radial oscillations turns out to be the same as that
of the X =0.1 models so no precise adjustement of X | was made to
fit exactly the present solar luminosity and radius.

The properties of the models tested for vibrational stability are
listed in Table 1, where x5, X ;,; and X, stand respectively for the
fractional distance of the discontinuity in chemical composition to
the centre, and the hydrogen abundance on the inner side and on
the outer side of the discontinuity. Other symbols have their usual
meaning. Models 1, 2, 3 (for X ,=0.1), 7 and 8 (for X =0)
correspond to the approach to the main sequence. Model 6
corresponds to the present Sun.

III. Non-radial Adiabatic Oscillations

The basic theory of .non-radial oscillations can be found in
Ledoux and Walraven (1958). We integrated numerically the
fourth-order differential system corresponding to the adiabatic
problem, taking into account the perturbation of the gravitational
potential. The form of the equations and the method of calcu-
lation are the same as given in Boury et al. (1975).
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Table 1. Properties of the models

a) Sequence Xc-o.l » X'-0.78I3

21

P

Model Age a X . T [ L el/=
Number "/EP (years) ) pi xno ¢ © e

1 1.5 4.44(7) 0.06150 0.09987 0.7796 1.392(7) 290.8 2.637(33) 168.3

2 1.5 4.98(7) 0.06508 0.09983  0.7791 1.374(7) 295.9 2.612(33)  170.4

3 1.5 5.75(7) 0.06514 0.09978 0.7785 1.358(7) 302.3 2.622(33)  175.4

4 1.5 8.68(8) 0.05720 0.09640 0.7182 1.343(7) 346.3 2.840(33)  220.3

s 1.5 4.70(9) 0.04652 0.07604 0.4190 1.509(7) 471.9 3.750(33)  419.1

6 2,15 4.70(9) 0.04977 0.07582 0.4168 1.513(7) 472.5 3.809(33)  342.1

b) Sequence Xc-O, X.-0.79L

7 1.5 4.83(7) 0.05736 - 0.7919 1.275(7) 507.4 2.546(33)  302.2

8 1.5 5.63(7) 0.06268 - 0.7911 1.275(7) 506.2 2.526(33)  300.3

9 1.5 9.03(8) 0.05152 - 0.7234 1.282(7) 543.3 2.703(33)  351.6
10 1.5 2.50(9) 0.04809 - 0.5951 1.334(7) 589.2 2.994(33)  429.0

Numbers in parentheses indicate the power of 10 which multiplies the preceding numbers.

Table 2. Periods of adiabatic oscillation and vibrational stability
results: g-modes of I=1 (see text)

Two remarks should be made, however: first, the presence of
the discontinuity of density accompanying the imposed discon-
tinuity in molecular weight makes the behaviour of the eigenfunc-

a) Sequence X =0.1 X_=0.7813 . . . .
N : o, tons less predictable and more complicated in the central
2 -1 a . . . . . . .
Hode  Model  w AL Ey Ep Be, 077 years regions, particularly in the neighbourhood of the discontinuity.
8 1 7.8780  3.222(3) 6.621(33) 2.005(37) 6.702(36)  3.617(5) For instance, modes with close frequencies can exhibit completely
2 7.8665 3.217(3) 7.055(33) 1.845(37) 6.676(36) 1.728(5) . . . . . . . .
3 7.8640 3.230(3) 7.551(33) 1.839(37) 6.132(36)  1.655(5) different amplitude distributions. The choice of a grid of points,
4 7.9046 3.360(3) 1.425(34) 2.267(37) 7.793(36) 1.627(5) . .
512,696 3.144(3) 5.622(35) 4.512(36) 9.943(35)  9.657(5) interpolated from the model under study and suitable for the
6 10.425 3.133(3) 5.143(35) 3.720(36) 7.724(35) 1.031(6) . . . . .
computation of the eigenfunction is no longer possible at the
82 1 3.2561 5.012(3) 4.805(35) 1.260(36) 1.414(31) 1.080(6) . o . . o
2 3.5710  4.774(3) 4.082(35) 1.222(36) 1.278(31)  1.139(6) outset of the calculation and it is necessary to use an algorithm
3 3.9404 4.562(3) 3.436(35) 1.204(36) 1.412(31) 1.185(6) . .. . . .
4 5.8776  3.912(3) 1.818(35) 1.246(36) 5.114(32)  1.289(6) optimizing the grid during the calculation.
5 10.754 3.416(3) 5.943(35) 6.990(36) 2.263(36) 4.350(5) 402
6  8.9907 3.374(3) 4.383(35) 8.810(38) 2.953(36)  3.979(5) Second, it is absolutely necessary to make sure that one has
% 12,1934 6.107(3) 2.070(35) 2.123(35) 1.497(33)  1.129(9) chosen a sufficient number of points in the model, for some
2 2.2158 6.061(3) 2.243(35) 2.205(35) 4.203(33) -6.698(7) . . . e
3 202795  5.998(3) 2.466(35) 2.311(35) 3.963(33) -3.576(7) eigenvalues and eigenfunctions turn out to be very sensitive to the
4 3.3686 5.167(3) 4.163(35) 3.769(35) 8.044(33) ~-1.719(7) : : :
S 7328 3.065(3) 4ldiaae) 37890 11303031 e.alaie detailed structure of the model. If the grid of the model is not
6 7.5896 3.672(3 1.267(35 1.708(37 6.405(36 1.726(5 :
» 2 en Go © narrow enough, the results can vary appreciably and depend on
1 1.3049 7.917(3 2.148(35 2.775(35 1.497(33 5.712(6 : :
o 3158 Tand) 2enay 1InGY 183 el the method of interpolation among the data of the model. In that
3 1.3971 7.662(3) 1.563(35) 8.474(35) 5.851(32 5.277(5) : : : : :
P 200993 6136500 Tiiercn 1030806 1it04(an  aiaerh case, we find that the interpolation by splines is less satisfactory
5 5.0533 4.984(3 3.404(35 1.077(36 9.896(34 .791(6 : . : : :
e 05 ) el 1%maGs G e than the linear interpolation in well chosen variables such as
gs 1 1.1075 a.ssaisg 1.913(35) 1.175(36) |.oos(31§ 2.912(5) ln(m(r)R3/r3M), Ing etc.
2 1.2376 8.110(3 1.553(35) 1.154(36) 4.795(31 3.214(6) s : 3 3
3 103807 7.764(3) 1.674(33) 5.898(35) 9.837(32)  8.492(5) The eigenfunctions are normalized in such a way that
4 1.9029 6.875(3) 1.419(35) 2.713(35) 3.585(33) 3.791(6)
5 4.4616  5.304(3) 1.615(35) 2.424(36) 4.345(33)  4.431(5) 2
6 3.6414 5.301(3) 1.424(35) 2.147(36) 1.499(33) 4.363(5) 6[’ dm
IR 3=t 1)
Rl M
a) A negative sign means instability. . . S .
) g g y Ife,, ey, €, are the unit vectors in the directions r, 0, ¢, and if we let
|/4n
Table 2. (Cont'd) — —
e, =4n Y7'(0,d)e,, e, =
1 1\ r =2 [l(l+1)]1/2
b) Sequence X =0 X =0.794
Mode Model ! P(s) . E E E o' Tyears?) aYTe + 1 aane
N F N\~ A Az
. 90 % sinf op ¢
81 7 12.016 2.645(3) 8.246(33) 1.420(33) 1.120(33) 2.179(6)
g l;:g; gzogég; 9.665%33; 1.587236; 6.319(32) 1.876(6) - 2 2
13. .60 1.229(34 1.850(36 4.443(33) 1.840(6) = =
10 16.174  2.522(3) 2.259(34) 2.024(36) 7.014(34)  2.009(5) -“ell dQ jleZl Q=1
4n 4n
82 7 7.8233 3.280(3) 9.341(33) 1.125(37) 6.111(36) 3.772(5)
8 7.8062  3.278(3) 1.022(34) 1.739(37) 5.568(36)  1.690(5) then
9 7.8625 3.411(3) 2.077(34) 1.775(37) 6.621(36) 3.131(5)
10 8.1235 3.559(3) 1.738(35) 2.059(37) 6.793(36) 1.436(5)
or=2ore (0, ¢9)+¢,e,(0,9)
83 7 4.6159 4.272(3) 2.205(33) 1.600(36) 2.180(31) 7.385(5)
g 2?12; 22228; fBi;éSi; ;.622%32; 3.3232“; 6.805(5; . . .
. . ! 3 .061(3 6.063(32 6.271(5
10 6.9676 3.843(3) 5.438(35) 3.287(36) 9.102(35) 9.375(5) Y;n 18 the Spherlcal quCtlon
s 7 2.4960  5.808(3) 4.135(33) 4.497(35) 3.301(33)  2.040(7) 204+ 1)(1—|m|)!1]V? .
' 8 3.0155 5.273(3) 5.231(35) 4.776(35) 2.856(33) ~1.617(7) (———)(—u)— P}(cosf) exp(im ¢)
9 4.3921  4.564(3) 5.694(35) 5.628(35) 1.355(34) -4.828(7) 4n(l+|m))! ! ’
10 6.1229 4.100(3) 1.723(34) 1.897(36) 4.739(33) 4.449(5) :
8s 7 2.3755  5.953(3) 2.503(33) 1.536(36) 2.708(33)  4.021(5) P}" being the associated Legendre polynomial.
8 2.2827 6.063(3) 8.094(32) 1.813(36) 1.128(31) 3.232(5) . . . .
9 2.6827  5.839(3) 8.637(32) 2.203(36) 2.045(31)  3.037(5) The classification of the modes in G f and Pn modes followmg
10 3.3025 5.582(3) 2.358(35) 6.273(35) 9.362(33) 4.030(5)
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2H, Fig. 1. Relative amplitude, ér/r of radial distance variations versus 7/R for the mode I=1,
1 x g5 in models 2, 4 and 5 :
e SR
-‘ ,'" J Fig. 2. Relative amplitude, dp/p of pressure variations versus r/R for the mode /=1, g in
2H models 2, 4 and 5
ar § Fig. 3. Amplitude ér distribution versus x =r/R for the I=2, p, (dashed line) and p, (solid
6 i i/%—p line) modes in model 1. Symbol D marks the position of the discontinuity. The peak at
i discontinuity is very sharp
bt
B i Fig. 4. Distribution of amplitude ér/r and dp/p versus r/R for the |=6, p, mode. Symbol D
10 i marks the position of the discontinuity. The peak at discontinuity is very sharp
Fig. 4

developed by Scuflaire (1974) and Osaki (1975). Their classifi-
cation criterion is proved by Gabriel and Scuflaire (1979) in the
case where the perturbation @' of the gravitational potential is
neglected. In the models studied here, the criterion works even
when ¢’ is taken into account, except when / the degree of the
spherical harmonic is equal to 1. When I =1, the criterion gives the
correct classification only when the order n of the mode is larger
than ~ 10, so the /=1 modes with n<10 were classified step by
step, starting from modes with n> 10. In columns 3 and 4 of Table
2, we list o?=R36?/GM, ¢ being the angular frequency, and the
period P (in seconds) of the modes g, through g,, for [=1. Figures
1 and 2 show for the mode g5, I=1 of models 2, 4 and 5 the
distribution of the amplitudes of dr/r, the relative radial displace-
ment and Jp/p, the relative lagrangian pressure oscillation. The
difference between the eigenvalues of model 5 and of model 6
comes from the difference in g /g due to the difference in radius.

The stable discontinuity of density induces, for each I, a
particular behaviour of the eigenfunction of one or more modes.
At the discontinuity, the amplitude reaches a maximum large

compared to the average value equal to 1 (cf. Eq. (1)). As ]
increases, the phenomenon, still not very conspicuous for I=1,
becomes more and more pronounced and the peak heightens.
Those modes can be called in a rather lax sense, discontinuity
modes. Figure 3 shows, for dr vs r/R, the behaviour in model 1 of
the modes p, and pg of I=2. The p, eigenfunction exhibits the
usual shape of a p-mode but the p, mode is characterized by the
larg amplitude near the discontinuity. Figure 4 shows, for the
same model, ér/r and p/p for the discontinuity mode of [=6.

In their behaviour near the discontinuity, the discontinuity modes
can be compared to the mode appearing in a stable system of two
layers made from different incompressible fluids of densities g,
and g, (Landau and Lifshitz, 1959). The angular frequency of the
mode associated with the discontinuity in density is given by

2akg— 22 2
P ngl+QZ @

where k is the horizontal wave number and g the gravity. (1) is
valid when the width of the two layers is large compared to k™ 1.
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Table 3. Periods of adiabatic oscillations and vibrational stability :
discontinuity modes (see text)

a) Model |
1 Mode w? P(s) Ey Ep E;(D) E, d -1 years
1 P1 18.605 2.097(3) 6.094(34) 2.289(38) 8.775(34) 7.990(37) 4.901(4)
P2 21.825 1.936(3) 5.488(34) 3.998(38) 1.270(35) 1.462(38) 3.008(4)
2 Py 69.615 1.084(3) 6.168(35) 9.731(37) 1.390(36) 3.886(37) 3.117(5)
3 Ps 113.65 8.483(2) 1.002(36) 1.788(38) 3.554(36) 7.882(37) 2.958(5)
4 Pe 156.63 7.227(2) 1.228(36) 7.506(37) 6.573(36) 2.386(37) 6.099(5)
5 p7 198.64 6.417(2) 1.389(36) 8.889(37) 1.058(37) 1.830(37) 8.939(5)
6 P7 240.26 5.835(2) 1.506(36) 1.726(37) 1.556(37) 5.971(35) 4.209(6)
7 Ps 282,13 5.384(2) 1.651(36) 2.006(37) 2.099(37) 1.187(34) 4.097(6)
8 P9 323.45 5.029(2) 1.732(36) 2.949(37) 2.762(37) 4.970(35) 3.195(6)
9 Py 364.68 4.736(2) 1.800(36) 3.431(37) 3.513(37) 1.800(31) 3.022(6)
10 Pio 405.86 4.489(2) 1.858(36) 4.427(37) 4.352(37) 1.435(35) 2.601(6)

b) Model 8
1 P2 26,054 1.794(3) 1.013(35) 3.035(38) 2.280(33) 1.179(38) 3.150(4)
2 ps 119.35 8.382(2) 6.820(35) 6.243(39) 3.190(35) 2.313(39) 7.852(3)
4 Py 277.24 5.500(2) 1.714(36) 5.922(39) 3.121(36) 1.714(39) 1.781(4)
8 P1s 573.71 3.823(2) 2.729(36) 2.801(39) 1.774(37) 7.096(34) 6.342(6)

Table 4. Periods (in minutes) of model 6 (“present Sun”) for radial
(I=0) and non-radial (=2, 4, 6, 8) modes. The identification of the
modes is given in parentheses. D indicates a discontinuity mode.
Last column gives solar periods observed by Brown et al. (1978)
in the range 10 min-70 min

2=0 fL=2 L=4 L=6 L=8 Observed
70.7 (gs) 71.1 (g20) 66.6 (g20)
62.2 (gls)
65.9  61.2 (gs) 67.3 (g11) 67.4 (g16) 61.9 (g10) 66.25
64.7 (g1e) 65.2 (g1s)
€2.9 (gs9) 61.3 (g14)
59.4 (gs) 56.2 (ge) 58.9 (813) 59.1 (817)
51.3 (83) 53.0 (g7) 57.6 (g12) 55.2 (816)
56.5 (811) 55.0 (g1s)
51.8 (810) 52.9 (814)
51.1 (gs) 51.1 (813)
41.7  44.8 (g2) 49.6 (gs) 46.3 (gs) 49.6 (g12) 44,66
43.8 (8s) 42.8 (g7) 48.5 (g11)
41.5 (gu4) 42.0 (gs) 45.5 (819)
44.2 (gs)
42.0 (gs)
31.4  39.1 (g1) 38.4 (g3) 37.1 (gs) 38.0 (g7) 39.00
35.5 (f) 36.6 (g2) 34.9 (gw) 37.6 (gs) 32.1
32.7 (pa) 34.3 (g3) 33.1 (gs)
31.3 (g2) 31.4 (gw)
31.3 (83)
24.7  25.4 (p2) 29.9 (g1) 26.5 (g1) 28.3 (g2) 28.7
20.8 (ps) 28.1 (f) 25.3 (f) 24.7 (g1) 24.8
27.9 (p1) 24.7 (p1) 23.3 (£) 21.0
22.3 (p2) 20.3 (p2) 23.2 (p1)
17.4  17.6 (pu) 18.5 (p3) 17.1 (p3) 18.8 (p2) 19.5
15.0 16.3 (ps)D 15.9 (pu) 14.8 (pu) 16.0 (p3) 13.3
13.3  15.3 (pe) 14.0 (ps) 13.1 (ps) 13.9 (ps) 12.1
12.0  13.5 (p7) 12.8 (ps) 11.77 (pg) 12.4 (ps) 11.4
12.1 (pa) 11.4 (p7)D 10,71 (p7) 11.1 (ps) 10.7
11.0 (ps) 11.3 (pe) 10.2 (p7)
10.1 (p1o) 10.3 (ps)
9.53(pao) 9.84(pe) 9.40(ps) 9.9
9.46(ps) D
. )
In the stellar case, taking k= —, (2) becomes
r
3
. I R® m(r) ep;—ep, 3
W~ = — 20 9piCoo 3)
rrr M op+op,

where gp,; and g,, are the densities on the inner side and on the
outer side of the discontinuity. In model 1, x,=0.065, g,,=181,
0p,=93, wh~41] which can be compared to the values taken
from Table 3, where w? and P for the discontinuity modes of [=1
through 10 in model 1, are given: Eq. (3) gives a good approxi-
mation for the w? of the discontinuity modes as soon as [~4.
The place of the discontinuity modes in the spectrum is also
indicated in Table 3. It should be emphasized that, for low-order
(non asymptotic) modes, the classification procedure, using
Cowling’s nomenclature, introduced by Scuflaire (1974) and Osaki
(1975) is made with the help of the number of nodes of dr/r and

23

op/p and with the order of their appearance from the centre to the
surface. The “discontinuity” modes are characterized by a high
amplitude at the discontinuity but, otherwise, they obey the
classification rule of Scuflaire (1974) and Osaki (1975) and take
place in the ordering of g, f and p modes. Let us recall that low-
order modes, whether g or p, can in somewhat condensed models,
have the character of an acoustic mode in the outer parts of the
star and of a gravity mode in the inner parts.

Besides having the observed solar luminosity and radius any
model of the present sun must also yield the observed neutrino
flux and predict the correct spectrum of oscillation periods. As
shown by Faulkner et al. (1975), the present solar model, such as
computed here, yields too high a neutrino flux. Using Bahcall’s
neutrino capture cross sections, model 6 produces 7.7 SNU. As far
as solar seismology is concerned, Table 4 gives the periods
predicted from model 6 in the range 10min —70min for /=0
(radial modes), 2, 4, 6 and 8, and comparison can be made with
Brown et al. observations (1978) listed in the last column. In the
standard sun and in the present solar model resulting from an
evolution with intermittent mixing (Scuflaire et al., 1975), a period
of about 60 min corresponds to the f~mode or to a low order (g,)
mode for =2 and [=4. Here it corresponds to higher order g
modes. The spectrum in the range 30 min — 60 min is far more
compact than the observed spectrum. This compactness arises
from the high central condensation of the model, due to the very
low initial central abundance of hydrogen. Of course, for each [, a
few modes only could be excited. We have examined the be-
haviour of the amplitude of the high order modes, which can be
put in two classes: for /=6, the modes g,, 9,0, 9, and g, are
trapped under the discontinuity. On the contrary, the remaining
modes between g, and g,, have lower amplitudes in that region
and their amplitude at the surface evolves regularly, from one
mode to the other, with a sudden maximum for the g, ; mode. For
[=8, the modes g,, g, ,, g, and g, , are trapped. Among the other
modes, between g,, and g,,, the mode g,, has a very large
amplitude at the surface. There seems to be nothing which
obviously favours the excitation of the modes of frequencies close
to the observations.

IV. Vibrational Stability

The damping coefficient o, ; relative to the k mode associated with
the value [ of the degree of the spherical function is written in the
same form as in Boury et al. (1975)

Ey—Ez+E,
ai,z=—%(——”M - ) )
o2 [ |ox2dm "*!
0
with
Ma 5T
Ey= [ —dedm ()
[
MaST (1
Ep= [ —4(-V-F|d 6
F g T(S(e’7 ) " ©
Mg S 1 _ .
Ee,= [ (I'y—% zgé(az+5V-Vp)dm (7
0

All symbols have the same meaning as in Boury et al. (1975). Ey
stands for the contribution of the perturbation of the nuclear
energy to the energizing of the pulsation, E gives the effect of the
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Table 5. Detailed contributions to the vibrational stability coefficient (see text)

Mode Eg a; E;‘ zg
Model 2 t=1 g, -3.717(36) 2.260(37) 8.806(34) -4.931(35) -
8, 7.236(35) 5.368(31) 3.792(35) -1.991 (30)
8, 7.864(34) 1.817(34) 4.524(34) -8.495(32)
LN 1.749(35) 5.517(33) 4.197 (34) -7.327(31)
g5 8.508(35) 1.690(32) 2.346(35) -1.837(30)
2=6 p, 8.182(36) 2.957(36) 7.202(36) -1.555(33) -
Model 4 t=1 g, ~4.251(36) 2.471(37) 9.923(34) -5.722(35)
g, 8.532(35) 1.799(33) 4.027 (35) -5.688(31)
N 1.234(35) 4.196(34) 7.034(34) -1.755(33)
g, 1.011(36) 5.382(32) 2.537(35) -2.163(31)
g 1.868(35) 1.712(34) 3.179(34) -6.973(32)
Model 6 %=1 g, 8.218(35) 2.251(36) 5.239(35) ~3.844(34)
g, -3.729(35) 8.992(36) 2.545(35) -1.905(35)
83 -3.325(36) 2.081(37) 1.247(35) -5.521(35)
8, -5.275(35)  1.265(35) 8.196(34) -6.023(33)
N 1.648(36)  6.668(33) 4.260(35) 2154(32)

2

Lo~

=N o = 0 o~

Eg Eg
.125(31) -2.989(34)
.653(35) -4.655(34)
.175(35) -3.824(34)
.716(34) -8.257(33)
.732(34) -2.939(34)
. 041(36) -3.740(34)
.215(32) -3.306(34)
.529(34) -2.866(34)
861(35) -4.321(34)

165(34) -1.915(34)
297(34) -3.855(33)
.048(35) -4.618(34)
841(35) -5.731(34)
738(34) -4, 824(34)
928(34) -2.044(34)
.915(34) -3.155(34)

perturbation of the flux, radiative and convective. The last
integral, E,, expresses the influence of the mechanical effects of
convection; ¢, represents the rate per unit mass of dissipation of
turbulent kinetic energy into heat (Ledoux and Walraven, 1958).
The integrals (5), (6) and (7) are carried up to the value M, of the
mass where the adiabatic approximation is no longer valid
(Ledoux, 1965).

Columns 5, 6 and 7 of Table 2 give the values of Ey, Ep, E,,
and of the damping time 1/¢’ for the low order g modes of I=1 in
the different models studied. A negative sign in front of 1/’ means
that the mode is vibrationally unstable and that its amplitude
grows with the e-folding time |1/¢"|.

Columns 5, 6, 8 and 9 of Table 3 give the same quantities for
“discontinuity modes” in models 1 and 8.

Eg can be written

Epr=E4+E.+E4t+EL+E+Eg

, M 3T doL

| Me ST 4oL

r L0, 0
Mo ST 1141

B=- ] (+ ML) 5o am (10)
0
M,

B 5; WD o g (11)
0
Mo ST I0+1) AL+l

Es=- T 22 X7 dm dm (12)

MedT I(1+1) Fi+Fg
Eo= | St =Cdm (13)

where subscripts R and C mean respectively radiative and con-
vective, while superscripts r and h refer to the radial and
horizontal components of the perturbation of the vector fluxes Fy
and F.. Table 5 gives, for some models, the contributions (8)
through (13) to E,.

A detailed discussion of integrals (5)«13) is developed in
Boury et al. (1975). E,, is destabilizing and Ej. is stabilizing in all

models, alhough some of the contributions (8)~(13) can be neg-
ative. The influence of each depends on the distribution, in the
model, of the amplitudes of the mode considered. For instance, in
model 2, the /=1, g, mode has a large amplitude for /R >0.2 so
that near the base of the convective envelope, the rapid fall of the
radiative luminosity causes L} to decrease outwards, while 6T is
positive. This overcomes the stabilizing influence of the inner
layers and EY is negative and destabilizing. The large amplitudes
in the convective zone, however, give a large value to Ef, strongly
stabilizing the oscillation. The g, mode, on the contrary, has very
small amplitudes in the region r/R>0.2. The layer where the
radiative luminosity decreases has a negligible effect on Eg, which
reflects the stabilization of the deeper layers. E¢ is also very small,
as well as E, .

In the sequence corresponding to X,=0.1, the [=1, g, mode
becomes unstable, through E,, at model 2, close to the minimum
in the ratio g /g, corresponding to the slight expansion of the
central regions, accompanying the onset of nuclear reactions, at
the approach to the main sequence.

The instability lasts until ¢/g¢ has grown enough again to
make the amplitudes in the envelope large enough to damp the
pulsation, through E. Stability is restored at about age 1.6 10° yr
when g_/g~245. Thus, model 6, of present solar age, is stable. The
differences between models 5 and 6 arise from the difference in
mixing length and radius, which gives a large difference in ¢,/g
influencing the eigenvalues and the eigenfunctions. Since ¢,/g
decreases with increasing I/H,, the instability duration will be
larger in the evolution with I/H,=2.15.

In the sequence X =0, instability takes place in the I=1, g,
mode. The qualitative aspects remain the same : appearance of the
instability near the minimum in ¢,/ and restabilization when g,/g
has reincreased sufficiently. The duration of the phase of in-
stability is large compared to the e-folding time of amplitude
growth (Table 2). The shift of the instability to the g, mode comes
from the difference in g /g between the two sequences of evo-
lution: not only as far as frequencies are concerned, but also in the
general shape of the eigenfunctions, mode g, of sequence X =0
resembles mode g,_, of sequence X =0.1, the additional node
appearing in the more dense central region.

The standard solar evolution going through models ap-
preciably less condensed than the present ones, meets a phase of
instability towards the =1 g, and g, modes. The instability lasts

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1980A%26A....85...20B&amp;db_key=AST

rTI98DARA © . -85. Z.-Z0B0

A. Boury et al.: Non-radial Oscillations ‘of Solar Mass Star

somewhat longer, about 2.5 10° yr, because of the smaller values of
o./e.

Consider the boundary condition at the surface [Boury et al.
(1975), Eq. (13)] which writes, neglecting &'

5P , l+1)] 6r,
(?);[“*“’ P }r

(14)

For =1, (6P/P), and (6 T/T), will be small around w?=0.45. The
influence of the outer layers will thus be small for modes around
that value of w?, which could favour the destabilizing nuclear
term E,. However, in model 2, for instance, @?=0.55 and 0.40
correspond to the modes g4 and g, which already present several
nodes in 6T/T in the region (0.03 <4 <0.15) of important nuclear
energy generation, so on the average, 6T/T is smaller than in the
g, or g, modes.

Moreover, the narrow spatial oscillation of the amplitude of
those inner layers brings an important stabilizing contribution
through E}. The expression for §L/L in integral (8) contains a
term (Boury et al, 1975, Eq. (26)) d(6T/T)/dlogT, giving in (8)
contributions which can be written, considering, for this argu-
ment, this term alone,

0T doL =0T d (d (6T\ | d
8T d* (6T\ | d

-.0T d 6T d 1
L Tl |

7 dogD)

=L 15)

The first integral will be positive while the second will be small.
That stabilizing effect is not altered by the small influence of the
outer layers.

Higher order g modes and p modes have large amplitudes in
the outer layers and are very stable.

The stability was also checked for g modes of [=2 and 4. All
models are stable. The amplitudes decrease towards the center as
r', and E, tends to be smaller with respect to Ep. In higher-I
modes, the horizontal temperature gradients will add to stability.

The modes associated with the discontinuity turn out to be
very stable (Table 3). The destabilizing maximum of nuclear
energy is again largely overcome by the large perturbation of the
temperature gradient. Near the discontinuity, the amplitude of the
discontinuity mode can be expressed, in a first approximation, as
exp(A(x — xp)) for x <x;, and as exp(A(xp—x)) for x >x,,. Integral
(15), carried on the domains [0, xp,[ and Jx,, co], yields the

destabilizing contribution 4 (‘%T) L / (d lgf T), while the discon-
D
tinuity brings the contribution

o [6T\ (5L SL\ 1 2ALGT/T)
Ex(D)= [(?)DL(T)XB‘ (‘f)xJ =T g

dx

where the subscript D refers to a value calculated at the discon-
tinuity. The global effect is thus very stabilizing. Seventh column
of Table 3 shows this contribution to integral (8). A steep profile of
hydrogen distribution and of density would have the same
stabilizing effect as the strict discontinuity on the modes with a
large amplitudes at the steep density change.
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V. Conclusions

A star of solar mass with an initial low or zero-hydrogen
abundance in a small central region and a normal composition in
the rest of the mass, will meet the same instability towards one
low-order g mode. Instability appears earlier than in the standard
solar evolution, at age 5 107 yr and holds until age 1.6 10° yr, the
phase of instability being appreciably shorter than in the standard
evolution. However the growth time of the amplitude is never
short compared to the Kelvin-Helmholtz time scale but is short
relative to the duration of the instability. The modes associated to
the discontinuity are all strongly damped. The spectrum of
periods of a present solar model coming from the evolution
studied here is much more compact than the observed spectrum.
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