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ABSTRACT

The properties of the second order linear eigenvalue problem describing the adia-
batic non-radial oscillations of stars are discussed analytically. Cases with disconti-
nuities in density are also considered. The distribution of amplitudes is studied using
a simplified model which allows the interpretation of numerical results obtained for
physical models.

1. Introduction

The mathematical properties of the eigenvalue problem describing
the adiabatic non-radial oscillations of stars are still poorly known and
our information rests only on numerical integrations.

Even when the problem is simplified neglecting the Eulerian pertur-
bation of the potential a rigorous analysis of the eigenvalue problem
is still lacking. As early as 1941 Cowling (1941) introduced the distinction
between p and g spectra on the basis of an asymptotic discussion of the
problem. Owen (1957) was unable to find the f-mode and the first p-
and g-modes for polytropes of high central condensation. Robe (1968)
showed that these modes still exist but that they acquire extra modes.
Scuflaire (1974) and Osaki (1975) showed that a regularity can be found
in all cases provided the nodes are counted in an appropriate way. We
give here a rigorous discussion of the properties of the eigenvalue problem
when the Eulerian perturbation of the potential is neglected. The discus-
sion is also extended to cases where discontinuities in density are present
in the star. For incompressible fluids, it is known that in such situations
as many new modes, called discontinuity modes, as density discontinu-
ities appear. We show that it is not always so in stars.
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The results of this mathematical discussion are summarized in
section 2.4.

When a density discontinuity is present in the star, there can never-
theless exist one or several modes having their largest amplitudes in the
vicinity of one of the discontinuities. This problem is discussed using
a simplified model whose predictions allow the interpretation of numerical
results obtained from physical models (section 4).

2. Oscillatory Properties of Non-radial Oscillations

2.1. Equations and boundary conditions.

Neglecting the Eulerian perturbation of the gravitational potential
(Cowling’s approximation) the equation for non-radial oscillations are

do
_d__; = aw, (1)
dw
— bv, (2)
with » = fyr?rand w = f,p'/e,
1 dlnp
fi= eXP(O '—1:1-—(-1;—(1 ), (3)
= dlng 1 dlnp
fz—;exp(ofAdr), 4 =— T @ (4)
oy r* f P
o-(E)G g o -n i
1 J
b :?(02—%2)—27 (6)

where ¢ is the velocity of sound, n = ¥ —Ag is the Brunt-Vaiséld frequency,

o, = VI(l+1)/r? ¢ is the critical sound frequency, ! is the degree of surface
spherical harmonie.

Equations (1) and (2) are those given in Ledoux and Walraven (1958)
modified to take the non-constancy of I'; into account.

Equation (3) shows that f, is continuous throughout the star even
when discontinuities in density are present. In such cases A must be
considered as a distribution to maintain the validity of Eq. (4), f, is dis-
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continuous at discontinuities of density and verifies the equation

for _Joo
04 L

where the subscripts — and -+ refer to the lower and upper sides of the
discontinuity.

For what follows it is useful to represent the solutions in the ('v(r),,
w(r)) plane (Scuflaire 1974) and to introduce the polar coordinates (y, 6)
defined by

’ (7)

v = ypeosh, w = psind. (8)
Then Eqs. (1) and (2) become

do )

r i becos? 0 — asin?0, (9)

dy .

T (@ +Db)wsin Ocosh. (10)

The discussion of the properties of the eigenvalue problem is based
on the behavior of the solutions of Eq. (9).
It is readily verified that the regularity condition at the center impo-
ses that » and w go to zero respectively as '+! and #, and that
limrw/v = o2/l and 6(0, o?) = n/2 + k.

r—>0
We may take k¥ = 0 and we have

Bl @ =l (11)
e e
for sufficiently small 7.

The boundary condition to apply at the “surface” is less obvious.
especially for non-zero surface temperature models. In all cases we are
led to a condition of the form 6(R) = a+kr, with 0 < a < =/2.

For zero surface temperature models the condition dp(R) = O,
which is equivalent to the condition of regularity of the solution, implies.
that

GM fo(R

0 — tg_l[ - f2( )

B* fi(R)

For these models it can be considered that in the outermost layers:

(r>ry),m(r)=M,r ~R and P = Kp” with y constant. Then if |n?|
> o2 > o the regular solution is

0 = kn+tg~(Bo™™), (12)

] +krn = w[2+kr.
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with m = (2y—I4) /Iy (y—1), s = BR—r, and

5 — m-+Vm® —4da, b, wp - Yr=T1)
B 2a, P My -1y

At a discontinuity in density Jr and dp must be continuous. This
implies the continuity of v and a discontinuity in w given by

e
and for 6
tg6, —tgh_ = ¢2gf (fi)(m*e_)- (13)

Obviously we may impose that [0, —0_| < = then 6_ and 6_ belong
to the same interval I, = [kr—=/2, kx4 =/2].

2.2. Oscillatory Properties of 0(r).

We first discuss the behavior of 6(r) for a given value of o2 Let us
consider for a given ¢2 a solution of Eq. (9), 0(r, ¢%), and an interval £,
= [y, 7] in which p is continuous and @ and b do not change sign. From
Eqs. (1) and (2) one gets d(vw)/dr = aw?- bv>

If ab > 0 then vw varies monotonically and can have only one zero,
i.e. only v or w can have a zero in #,. This means that if ab > 0 i.e. if max
n%(r) < 0% < minoZ(r), or if maxol(r) < o < minn?(r), or if ¢* < min
{0, n*(r)}, then [0(rz, 0®) —0(ry, 0%)] < .

If ab < 0 then we can have |0(rs, 02) — 0(ry, 62)| > .

If a <0 and b>0, i.e. if o2 > max{s’(r), n%(r)} or maxn?(r) < o2
< 0, for r € #,, then Eq. (9) shows that 6 increases with r.

If >0 and b<0, ie. if < o%< min{di(r), n*(r)} for re &,,
then 0 is decreasing with 7.

If N discontinuities are present in %, each discontinuity produces
a discontinuity in 6 smaller than =, keeping 6 in the same interval I,;
therefore |0(r,, 0%) —0(ry, 0?)| < (N +1)x when ab > 0.

Let us now consider 6 as a function of o2
Let 0,(r) = 0(r, o2) and 0,(r) = 6(r, 03), with o} > o?, be the two solu-
tions of Eq. (9) satisfying the central boundary condition (11). We first
suppose g continuous in (0, 7). We have:

d . . sinf, — sinf
— (6,—0,) = —(a;+b,)(sin 62+sm01)_b2__0—1

dr
X (0,—0,) + (by—b;)c0s20, -+ (a;, — a,)8in2 0, = ¢g(0,— 0,)+h.
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Since @ and b are decreasing and increasing functions of o%, respecti-
vely, h(r) >0.

In the vicinity of r = 0,d(0;,—6,)/dr >0 and 0, > 6,. Therefore
if (6,— 0,) could have one zero for r > 0, we would have at that point
d(6,— 6,)/dr < 0 which is impossible since & > 0. So 0, > 6, for r > 0,
and 0 is an increasing function of ¢2 for ¢2 e ]—oo, 0[and ¢2e]0, oo[.
This property remains true when crossing a discontinuity. 6,_ > 6,_ and,
if ,_ and 6, belong to the same interval I, we have from Eq. (13):
tg0,, —tgf,_ =tg6,, —tgh,_ or tg0,, —tgb,, = tgh,_—1tg6,_ > 0. This
means that 6,, >0,,. If 6, and 6, do not belong to the same
interval I, the result is obvious.

Next we show that for >0, lim 6(r, 0?) = oo (Proposition I).

G400
Let us consider an interval %, = [ry,7,] and o} = max/(o}(r), n%(r))
(r € R,). Forany ¢ >0}, a < 0 and b >0 in %, and 6 increases with 7.
Let m = min(—a(r)), 7 € &, 0> > o} and ¢ = min (b(a)), r € &y, 0% > ai.
From Eqs. (1) and (2) we have
d 14V
= )+bV =0.
(-+ %) 14)

dr

Let us also introduce the equation

d (1 av
(%—dr—)-i-GV = 0. (15)

dr

The distance between consecutive zeros of V() is 11:/1/m—0. From the
comparison theorem (see e.g. Coddington and Levinson 1955) we know
that v(r) oscillates more rapidly than V(r). Therefore if N is the number
of zeros of V(r) in %, then 0(ry, 02) > 0(ry, 6% + (N —1)=. Since VmC
goes to infinity as o,

lzimN - o0,
which proves the theorem. |
We now show that for r > 0,

lim 6(r, 6?) = — o0
i) (ry 0%) )
except if n2(r,) < 0 for all 7o < r (Proposition II). We first suppose n?(r)
> 0 for 7 e &, and let 0 < o} = min(o}(r), n2(r)), (r € Z,).
For 0 < o2 < ¢?,a >0, and b < 0 in £, hence 0 is a decreasing fun-
ction of r. Let

m =min(—>b(r)), C =min(a(r)), reR, o*<ol.
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Following the same reasoning as above we obtain
0(rsy 0%) < 0(ry, 0?) — (N —1)m,

where N is the number of zeros of the comparison equation in %, .Since

VmC goes to infinity as o? goes to zero,
lim N = oco.
2—>0+
If »*(r) < 0 in #,, the result remains true as far as n2(r) > 0 in some
finite interval %, = [r;, r,] with r; < r,. The result is valid for any point
7 € #,. In the region where n2(r) < 0,a > 0 and b > 0 and 6 can vary at
most by n. We have
0(rs, o) < 0(r3, 0%+,
and again
lim 0(7y, 0%) = —oo.
—0 4

Let us now show that for » > 0,

lim 6(r, 0%) = oo

a ( ) )
except if n%(r,) > 0 for all r, < » (Proposition III). Let us first suppose
n*(r) < 0,r e &,, and let us define of such that

max (n¥(r)) = 63 <0, reR,.

Then a < 0 for all ¢2 < 0 and b > 0 for o® > o?; hence 6 is an incre-
asing function of 7.
Let m = min(b(r)) r € Ry, 0* > 0}, C = min(—a(r)),r e Z,, o* > o.
Using again the comparison theorem we prove the theorem following
the same reasoning as above.

In n?(r) > 0 in £, the theorem can be generalized as above and we
have

lim 6(r,, 0?) = o0,
02—>0—
if n(r) < 0 in some finite interval %, = [}, r;] with 7, < r,.

Since 6 varies through a discontinuity at most by = all these theorems
remain valid when a finite number of discontinuities are present in the
star.

2.3. Classification of the modes.

A. Positive o2
If 6(r, o?) is a solution of Eq. (9) satisfying the central boundary con-
dition (11), ¢2 is an eigenvalue if 0(R, o2) satisfies the surface boundary

condition (12).
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If n2(r) is not negative everywhere in the star, 0(RE, o2) is a conti-
nuous function of ¢% which varies from —oco to -+ oo when o? increases
from zero to infinity. As a result for each value of k there is of such that
condition (12) is satisfied. The o} obey the following properties:

(a) all ¢} form an increasing series,

(b) lime} = 0,

k—>—o0
(¢) lima#j = oo,
k>4
(d) the eigensolution v, (r) associated to o} has exactly & zeros provided

that the nodes are counted positively when d6/dr > 0 and negatively
when df/dr < 0.

It is easy to verify that p-modes correspond to £ > 0 and g-modes to
k < 0. The fundamental (f) mode is associated with ¥ = 0.

Suppose we set the velocity of sound ¢ = oo, 80 @ > 0 and proposi-
tion I cannot be proved. Moreover Eq. (11) shows that 6 < =/2 in the
vicinity of the center and Eq. (9) shows that 6 = =/2 and df/dr > 0
is impossible when @ > 0. Nor can a discontinuity allow 6 to jump through
7/2 since as shown above 0, and 6_ are in the same interval ;.

When ¢ = oo, modes with k& > 0 do not exist and it is well known that
this is also the case for acoustic modes (p-modes).

Suppose now that we consider a convectively unstable model so that
n2(r) < 0 for all » > 0, and b > 0 everywhere. Then proposition IL cannot
be proved and from Eq. (9) it is impossible to have both 6 = krx and d6/dr
< 0 when b >0 and when o is continuous. Therefore there exists no
mode with & < 0 for fully convective models having no discontinuity in
density. On the other hand, we know that such models have no g*-modes.

Suppose now that there are N “stable” discontinuities, ¢.e. with o,
< p_ in the convectively unstable model. Each discontinuity can lead
to a jump of @ through k= (k < 0) since 0, < 6_. We will now show that
in such a situation there exist N g™-modes. In this case b is positive eve-
rywhere and ¢ >0 in #, =] 0, r,[. For non zero surface temperature
models r, = R for sufficiently small ¢2. For zero surface temperature
models 7, < R since o,(R) = 0. But (R—r;) is proportional to o¢? for o*
sufficiently small.

In %,, 60 cannot go through (k-+1/2)7 with d6/dr > 0 and through
kr with dé/dr < 0.

Writing Eq. (9) in the form

dtgo
dr

with tg0, = l/m and 0 < 0, < w/2, we see that dO/dr < 0 when
—(k+1)n+0, < 6 < —kn— 6, and is positive otherwise.

= a(tg?0, —tg20),
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‘We also have:

lim ¢« = c0o and lim 6, =0.
0’2—>0+ 02—>0+
At the center 0 = =/2 and d6/dr < 0. Therefore, for sufficiently small
o2, 6 will rapidly decrease to values close to - 0, but larger than 0. If
o2 is small enough 6, is close to zero and 6 jumps to values smaller than
— 0, when crossing the first discontinuity since 6, < 6_ when o, < g_.
6 will then decrease to values close to — =+ 6,, but larger than — =.
The same behavior is reproduced for each discontinuity. After the last
discontinuity 6 converges towards values close to (—N=+ 0,).
At r,, 0, = /2 but the interval over which 6, discards appreciably
from zero is proportional to ¢~2. Since in £, d6/dr < bcos26 > 0, then

lim 6(r;) = — N=.
62—>0 o
In non zero surface temperature models 7, = R for sufficiently
small o2 then
lim 6(R) = —Nm=.
O‘2-—>0+
Since 6 is an increasing funection of ¢2 the surface boundary condition
will be fulfilled for 0% with —1 <%k < — N and we have N g*-modes.
For zero surface temperature models
lim », = R.
0‘2—>0 4
Moreover, n* and ¢~? have singularities at the surface.
For r >r, we can assume that m = M, r ~ R, and p = Ko with
y = constant. Then:

2y —1TI"
—Jfl—:Klmm, m = z 1 , = (R—r),
2 I'y(y—1)
GM T GM I, 1
@ =———(y—1)z, —n®= e
R* R I'(y—1) =
Let us introduce the comparison equation
a0, ’
> Ncos?0,-+Msin?0,. (16)
r

with
M = (B*|)(fulfs) = 087 > —a, N = a(—=n*|B*)(fy/fy) = abyz™™7},
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where o is taken large enough so that N > b. We have

limae =1,

6250

hence the solution of (16) which satisfies the surface boundary condition is

6, = kn-+arctgf,o™,

with
m+Vm?—4aa, b y(y—1TI
By = s ’ a;b; = 7_27/__1)_
2a I'i(y—1)2

Let 0,(r) be a solution of (9) satisfying the surface boundary eondition.
Near the surface d6,/dr > df/dr, as shown by Eq. (12). Therefore since
0,(R) = 0,(R), we have 0,(») < 05(x), and 0, varies by less than w/2
in [r,, R[. For ¢% small enough, 7, < 7,, and 6,(r,) = 0 and 6(r;) < O4(r)-

Since 6 is an increasing function of o2, 0(r,) = 0,(r;) will be fulfilled
with —N < k¥ < —1 for N values of o2 > 0 which correspond to N
gT-modes.

The situation just considered may seem artificial but it is also of
interest for homogeneous models with discontinuities.

Tt should be noticed that we find that o, < of < o} for all | values.
This result seems to be true in all models when the fourth order problem
is considered, provided I > 2. For I = 1 the eigenvalue of the fundamental
mode is then zero (62 = 0) and the eigenfunction corresponds to a displa-
cement of the whole star. This difference is due to our neglect of the
perturbation of the potential which is a crucial approximation in that case.

B. Negative o2

Let o} = min(n*(r)), r€]0, R[. Then a <0 and b <0, when o*
< 2. Hence for o2 < of and ¢ continuous, we have ©/2 < 6(R, %) <=
because df/dr > 0 at the center, and it is impossible to have 6 = = and
d6/dr > 0 or § = w/2 and df/dr < 0 for r > 0. As a result it is impossible
to fulfill the surface boundary condition (12) for any ¢® < oj.

For models with at least one convectively unstable zone (n2(1~) < O)

we have seen that
lim 6(R)= oo.

2

0“—>0_

Therefore in such models the surface boundary condition can be
satisfied for an infinite set of eigenvalues o}, 1 < k < oo, and the corres-
ponding eigenfunctions v, have (k—1) zeros outside the origin.

The o} obey the following relation:

02>0} and lime} =0_.
k—o0

Clearly the spectrum is the g~ -spectrum.
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Let us now consider a fully radiative model (n2(r) > 0 for all » > 0)
which has N “unstable” discontinuities such that ¢, > o_. We will show
that there exist N g~-modes. In such models for ¢2 << 0, @ and b are ne-
gative, hence 6 cannot go through (% +1/2)= with d6/dr < 0 or through k=
with df/dr > 0.

Writing Eq. (9) in the form dtgf/dr = a(tg26, —tg260), with tgb,
=Vbla,0 < 6, <=2, we see that d6/dr >0 when (k+1)m—0; > 0
> kn + 0,, and is negative otherwise. We also have

lim ¢a= o0 and 1lim 6, = 0.
020 020_

Hence since at the center 6 = =/2 and d6/dr > 0, for sufficiently small
|o?|, 0 will grow rapidly to values close to (w— 6;) and then will remain
close to that value.

For sufficiently small |o?|, 6, is small enough to allow 6 to jump to
values larger than = 4- 6; when crossing the first discontinuity, since 6, > 6_
when ¢, > o_. 6 will then increase to values close to (2r — 6,) and the same
scenario will be reproduced at each discontinuity. After the last discon-
tinuity 0 converges to values close to [(N +1)x— 6,]. 6 is a continuous
increasing function of ¢% and

lim6, = =/2

r—R
under the same conditions as those required for ¢ = =/2 in Eq. (12),
hence it is possible to find one ¢2 such that |02| is small but large enough
to satisfy Eq. (12) with ¥ = N. When |¢?| is increased Eq. (12) is satisfied
for 1 <k < N and we have N g~-modes.

2.4. Summary.

In the preceding pages we have proved in Cowling’s approximation
several properties of the eigenvalue spectrum of non-radial oscillations.
They are based on an algebraic count of the nodes of dr. Nodes are assig-
ned the sign of d6/dr at that point (see Eq. (8) for the definition of 6).

These properties are:

1. All stars have a stable p spectrum of pressure modes, i.e. o} > 0,
k =1,2,..., which has an accumulation point at infinity. The eigenfun-
ction dr, associated to o} has k zeros.

2. There is a fundamental mode associated to k¥ = 0, with o} > 0.
‘The algebraic sum of the nodes of ér, is equal to zero.

3. If the star has at least one radiative zone, there is a stable g*
spectrum of gravity modes, i.e. o >0,k = —1, —2,..., which has
an accumulation point at zero. The eigenfunction dr, associated to o
has k zeros (k< 0).
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4. If the star has at least one convectively unstable zone there is
an unstable g~ spectrum of gravity modes, sometimes called convective
modes, i.e. 0} <0,k = +1, +2,..., which has an accumulation point
at zero. The 6r, associated to o} has k zeros. The smaller eigenvalue of
is larger than the minimum of the square of Brunt-Viisild frequency.

5. If there are N “unstable” discontinuities in the star such that the
density below the discontinuity is smaller than above, then N new modes
appear in the eigenvalue spectrum provided there is no convectively unsta-
ble zone, i.e. if there is no g~ spectrum. We call these modes unstable
discontinuity modes. They are all unstable s.e.; of < 0,5 =1,...,N.

6. If there are N “stable” discontinuities in the star such that the
density below the discontinuity is larger than above, then N new modes
appear in the eigenvalue spectrum provided there is no g* spectrum. (The
homogeneous model is an example of such a situation.) We call these
modes stable discontinuity modes. They are all stable i.e. o] > 0,§ =1, ...

—.

3. Behaviour of Eigenfunctions at a Discontinuity

3.1. Analytical Discussion.

From the results of the preceding discussion we see that under some
circumstances the presence of discontinuities in density introduce new
modes which may be named discontinuity modes while under other (and
most common) circumstances no new mode may be associated with a dis-
continuity. This of course leaves the problem of the behaviour of the
eigenfunctions unsolved and it may well be that some modes show large
amplitude near the discontinuity. Numerical computations show that it
is so.

Some properties of these modes can be understood with the help
of a simplified model which can be studied analytically.

Let us consider a system formed of 4 zones labeled 1 to 4 from bot-
tom to top. We will suppose a plane geometry and that the gravity g,
the sound velocity ¢ and the Brunt-Viisidld frequency . are constant.
In zones 1 and 4 the perturbations are supposed to be sinusoidal; vertical
wave number is y;, ¢ — 1 or 4. Zones 2 and 3 are separated by a disconti-
nuity in density. In order for the amplitude dz at the discontinuity to
be much larger than in regions 1 or 4 the perturbations must have an ex-
ponential behaviour in zones 2 and 3 of the type exp (4 4;2),% = 2 or 3.
This implies (Tolstoy 1963) that

o>  LkH2n?

2 _ 1.2 2 _
A =kg+v = pr

’

10
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where % is the horizontal wave number and

1 dlnp

Yy = — —

2 dz

After some calculations it is possible to get the ratio R;,7 =1 or
4 of the amplitude at the discontinuity to the amplitude in zone 1 or 4.

It is found that in order to have R, > 1 and R, » 1 ¢* must be
close to

02— 03
oy = gk} . (17)
¢ 7 024+ @313—”(92—93)

This expression is very similar to that obtained for incompressible
fluids (see for instance Landau and Lifchitz 1959). The width of the domain
of ¢? around o2 where R, > 1 decreases when h, A, increases (h, is the thick-
ness of the second zone). Very often h,4, > 1 and then the width of that
domain is given by Eq. (18).

< M A0+ 4505
ViR+22 2 02+ 4303 —v(0a— €3)

A similar condition can be obtained to ensure R, > 1.

In this local analysis we have not taken into account the conditions
which the modes must satisfy at the boundaries of the star (at the centre
and at the surface). When these are taken into account, a set of discrete
frequencies for the modes are obtained. Depending upon the model,
the spectrum of frequencies will be more or less dense in the vicinity of
o, and several or only one mode will exhibit large amplitude at the dis-
continuity. The probability to have several modes with large amplitudes
at the discontinuity increases when ¢, goes in the range of g or p modes
of larger and larger order.

When we consider the case of two homogeneous incompressible
layers, there is a unique mode owing its existence to the presence of this
discontinuity. It is important to emphasize that in more general situations,
there is no longer mode owing its existence to the presence of the discon-
tinuity. The effect of the discontinuity is to change the behaviour of
modes whose frequencies lie in an interval determined by the disconti-
nuity.

% — 0}

exp (—hyd,). (18)

o3

3.2. Numerical Calculations.

The predictions of this simplified theory have been checked on stellar
models of a 1.1 M star with a chemical composition given by X = 0.6,
Z = 0.044. At the beginning of the main sequence phase for X, > 0.25
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the models have a small growing convective core with a “stable” discon-
tinuity developing at the top of the core. Numerical calculations have been
performed for spherical harmonic degree I equal to 10, 25, 50 and 100.
In this situation there is no new mode associated with the discontinuity.
Nevertheless some modes, sometimes one, sometimes several, depending
upon the importance of the discontinuity and the chosen ! value, have
their largest amplitude on the discontinuity and we will also call them
discontinuity modes.

Table 1

A few properties of the models. q is the mass fraction and x the
fractional radius at the discontinuity. X, is the central hydrogen

abundance
01— Q2
n® —_— q x X,
o1+ ¢
1 3.8x1073 3.41 x 102 7.13 x10—2 0.568
2 2.3 x10—2 4.20 x 102 7.15 x 102 0.466
3 6.2 1072 4.83 X102 6.9 x10—2 0.332
Table 2a

Dimensionless eigenvalues »? of discontinuity modes, ratio
R, of amplitudes on the discontinuity to the maximum value in
the rest of the star and identification of the modes for model 1

l 10 25 50 100
w? 8.747 19.682 38.256 75.42
R, 11.31 107 8 x 108 10°

86 g4 b i
w? 8.626
R, 78
g7
? 7.478
R, 2.10
Js

A few properties of the models studied are given in Table 1. Table
2 gives the eigenvalues »?® of the discontinuity modes in unit GM /R3,
the ratio R, of the amplitude of dr/r on the discontinuity of its largest
extremum value elsewhere in the star and the identification of the modes.
In all cases except one, only one discontinuity mode was found. For model
1 and ! = 10 three discontinuity modes were found but their amplitude
on the discontinuity is much smaller than in the other cases. The other
eigenvalues show R, values much smaller than one.
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It must be noticed that for all eigenvalues
ny < 6% < ol g,

where the subscript d indicates that #2 and ¢2 are computed at the upper
side of the discontinuity. Therefore these modes are by no way comparable
to the modes sometimes trapped in the interior for which ¢% < n2. In order
to have similar trapped modes it would be necessary to replace the dis-
continuity by a sharp ¢ gradient. But then a complete spectrum may
appear in appropriate circumstances, for instance if, in a fully radiative
model, an unstable discontinuity is replaced by a ¢ gradient.

Table 2b

Same as table 2a but for model 2

l 10 25 50 1000
w? 51.38 120.1 233.8 454.2
R, 4 x108 2 x 102 4 % 1080 4 x 1047
Py P3 e P
Table 2¢
Same as table 2a but for model 3
l 10 ‘25 50 100
w? 145.0 340.5 666.2 1317
R, 3x107 5x 1022 3 x 10% 6 x 104
Ps Ps Ps Pe

The value predicted by Eq. (17) lies always within a factor 2 of the
figures in Tables 2. It is systematically too small but comes closer to the
numerical values as 1 or (o, — g,)/(o, + ;) increases. Eq. (17) gives therefore
a useful order of magnitude for the search of the eingenvalues of the dis-
continuity modes.

All the modes have an exponential behaviour in the vicinity of the
discontinuity with Ar = 1. Therefore the simplified model predicts that
the maximum possible amplitude on the discontinuity increases with 1
while the peak sharpens. This behaviour is found in the numerical results.
Firstly, B, tends to increase with I. Secondly, 3 discontinuity modes are
found for the lowest ! in model 1 and these modes fall among high order
g-modes.

For a given I value, when the discontinuity mode is a g-mode, the
cigenfunction will cease to have an exponential type behaviour for smal-
ler 7/R than when it is a p-mode. To interpret our result with the aid of
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Eq. (18) this means that k,4, is smaller in the first case than in the second.
This means that it is more likely to have only one discontinuity mode in

the second situation than in the first one.

The very peculiar amplitude distribution of gravity modes should be
kept in mind when discussing the stability of models with discontinuities

in density.
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