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Abstract. Numerical integration of the linear non-adiabatic equations for radial perturbations of
physical models of supermassive stars confirm the existence of both dynamical and secular instabilities
Aabove a critical mass. The value of the latter agrees very well with that deduced from approximate
stability criteria. The present analysis brings out for the first time the existence of a continuous
transition between dynamical and secular modes in a sequence of models of different masses.

1. Introduction

Hoyle and Fowler (1963) have invoked the existence of supermassive stars with masses
ranging from 10° to 10® M, to explain the fluxes from intense radiosources. The burn-
ing of hydrogen in a star of 108 M, could explain luminosities as high as 10*° or
106 erg s~ ! observed in the brightest sources (Matthews et al., 1964). The discovery
of quasars and the cosmological interpretation of their redshift (Matthews and San-
dage, 1963; Schmidt, 1963; Greenstein and Matthews, 1963) seemed to confirm the
point of view of Hoyle and Fowler. Other hypotheses have been put forward to explain
the nature of quasars (see Demaret, 1969b, 1970). They may be divided into two classes.
The former are variants of the hypothesis of the supermassive star, the latter interpret
the quasar as a set of more or less independent objects (supernovae for instance or very
massive stars). The statistical study of the fluctuations in luminosity seems to favour a
unique object (Gudzenko et al., 1968, 1971).

We shall not raise here the difficulties of formation of supermassive stars, we shall
be mainly interested in the problem of their stability. As yet this problem has been
investigated only with approximate stability criteria and the polytropic model of
index three has been often used for this purpose. These criteria have shown that super-
massive stars with masses greater than a critical mass (M,,) of about 5 x 10° M, are
dynamically and secularly unstable (see Section 3). In this paper we report the results
of a study of the complete linear non-adiabatic radial perturbations of physical models
of supermassive stars in the main sequence stage with masses in the neighbourhood of
the critical mass.

2. Models

We have computed main sequence models of supermassive stars with masses ranging
from 10° to 10° M. This domain of mass was chosen so as to include the critical mass
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of instability. We have supposed no rotation and no magnetic field. We have adopted
for a chemical composition of population I the values of :

X =028, Y=0.18, Z =0.02,
Xeno = 1.2 x 1072 (Iben Mixture XVII of Cox and Stewart, 1970).

With the Schwarzschild’s metric
ds? = e'c* dt? — r*(d6? + sin? 6 d¢?) — e* dr?,
the field equations of general relativity may be written

dv e -1  8G

5 = ; + _CT re*P; (1)
di et —1 8nG

%= " + - re*es )
dp dv

where ¢ is the energy density, including the rest mass energy and the internal energy
v
e = oc* + oU.

The equations governing the hydrostatic structure may be written in a form similar to
the classic one (Oppenheimer and Volkoff, 1939). With the mass m up to the value r
of the radius defined by

2Gm

-4
et =1-—
rc?

we get

dm 2
T dnrie,

dP _ GmP +e | 2Gm\ ! ) +47zr3P
dr r> 2 rc? mc?
As far as the equations of thermal equilibrium and transfer are concerned, since the

uncertainties on the rate of nuclear energy generation ¢y are greater than the general
relativistic corrections we keep their classical forms

L
T = 4nrigey,
dr 3xoL .
F Pl @5%]‘3’ (radiative zone) 4
dT dT .
7 = \T) (convective zone)

The second member of the latter equation is computed according to the usual mixing
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length theory of convection (Vitense, 1953; Bohm-Vitense, 1958) with a mixing length
equal to the pressure scale height. In our models, the convection is very efficient and
to a very good approximation we can write for the convective flux

1 oP
F.= — CpoT=—(V -V, 32, 5)
4\/-2- rQ 0 ( d) (

olno dinT 2ln
= —({——=} > V=r-—7—, Vi = {——=]) -
Q (a In T)P dlnP ad (a In 11;)5
In supermassive stars density is low and temperature is high. The matter is completely
ionized and the equation of state is that of a mixture of an ideal monoatomic gas and

radiation. The pressure of the gas represents only a slight fraction of the total pressure
i.e.,

where

Pg
= ?<<1'

Thus we have
r-(ZR) tilps ot
The opacity is essentially due to electronic scattering. It is a constant given by
=021+ X).
Nuclear energy is produced by the carbon cycle. In the domain of temperature where
it works in our models, the rate of production is approximately given by
ey = 1.456 x 107130 X Xcno TE27.

The models have been described in details and discussed elsewhere (Scuflaire,
1975a, b). They are composed of an extended convective core (0.9 of the radius) and a
radiative envelope containing a slight fraction of the mass (of the order of 2 x 10™%).
The structure is close to that of a classical polytrope of index 3. The luminosity is
proportional to the mass so that the lifetime of supermassive stars on the main se-
quence is independent of the mass and is of the order of 2x 10° yr. Table I gives

TABLE 1
Some characteristics of the models

10-s M e T, 2 R L . E GM
M, (gcm~3) (K) (cm) (ergs™") (K) (erg) Rc?
1 7.25(—2) 5.59(7) 2.33(—2) 3.21(13) 1.35(43) 6.55(4) —1.20(54) 9.17(—4)
2 546(—2) 5.72(7) 1.65(—2) 4.48(13) 2.72(43) 6.61(4) —2.04(54) 1.32(-3)
3 4.63(=2) 5.79(7) 1.35(—2) 5.44(13) 4.10(43) 6.64(4) —2.47(54) 1.63(—3)
4 4.12(—2) 5.85(7) 1.17(—2) 6.24(13) 5.48(43) 6.67(4) —2.46(54) 1.89(—3)
5 3.76(—2) 5.89(7) 1.05(—2) 6.94(13) 6.86(43) 6.69(4) —2.02(54) 2.13(—3)
7 3.28(—2) 5.96(7) 8.84(—3) 8.14(13) 9.63(43) 6.72(4)  0.23(54) 2.53(—3)
10 2.83(—=2) 6.03(7) 7.39(—3) 9.66(13) 1.38(44) 6.75(4)  7.06(54) 3.05(—3)
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some characteristics of the models at the centre (g, T,, f.) and at the surface (R, L).
E is the total energy. The parameter 2GM/Rc? gives the importance of relativistic
effects which remain small in the domain of mass considered as far as the structure of
the star is concerned.

3. Stability Criteria

Iben (1963) has shown that relativistic polytropes with sufficiently large masses have a
positive total energy and are consequently dynamically unstable. Chandrasekhar
(1964) has derived a variational principle giving the squares of the frequencies of the
radial normal modes as the stationary values of an integral expression. Applied to a
polytropic model of index 3 and constant adiabatic coefficient Iy, this principle pro-
vides the following criterion of stability
r, > g + 1.1245 21(:—6]‘2{ (6)
This criterion differs from the classical one by the presence of the term in 2GM/Rc?.
A criterion based on the consideration of the energy as a function of radius in a
sequence of homologous models has been used by Fowler (1964, 1966a) and proved by
Thorne (1966a Section 4.1.4, 1966b Section 4.2.4). This energy method results in the
same criterion (6). The same condition of stability is also obtained from the expression
of 62 (¢ being the angular frequency) of an adiabatic homologous pulsation derived
by Fowler (1966b) using the virial method. Though these criteria cannot apply exactly
"to our physical models we used them and found a critical mass of about 3.7 x 10°Mo.
Appenzeller and Kippenhahn (1971) have shown that supermassive stars with
sufficiently large masses are secularly unstable. The criterion used by these authors is
derived from the consideration of homologous transformations and neglects the
transfer of energy during the perturbation. According to Osaki (1972) this instability
is not distinct from the dynamical instability. Demaret and Ledoux (1973) have
rediscussed the problem and shown that secular instability appears simultaneously
with and as a consequence of dynamical instability.

4. Computation of Linear Radial Perturbations

As the non-perturbed model is a static one, every perturbation can be described as a
superposition of normal modes which depend on time as ¢ where s is generally a
complex coefficient. The computation of normal modes of linear radial perturbation
leads to the resolution of a boundary-value problem described below.

Although relativistic corrections have only a small effect on the structure of the star,
this is not true of its stability. Indeed it is the relativistic terms in the dynamical
equations which introduce the possibility of dynamical instability. Let Jf and f* be
respectively the lagrangian and eulerian perturbations of any quantity f. With these
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notations Equations (39), (43) and (51) of Chandrasekhar (1964) may be written as

¢ = —5rg-§ — (P +e) e:f (e~ 57)

Z sze“”P:; & or = % +P’§;(%1 + ) +

+ %s'g; - (P + 8)($ + }1—) (% + (dl;)ér, @)
n = —or %:—z —-n e:;z % (r%e™2 or); ®

n being the number of baryons per unit volume. The latter equation may be written as

v/2
‘5—5= = (%(rze-w2 o). | ©)

From Equations (8) and (28) it follows that

d (or 3 1 dP\dor 1de

(&) = (-2 — )= - =, 10

dr(r) ( r+P+adr)r ro (10)
With the aid of Equation (7) &' is eliminated from (8). Taking into account Equations
(1), (2) and (3) we obtain, after some tedious algebra,

2
d(ép)={ 4dP—§:TGre‘(P+8)+——r (d_li) —

dar\'P " Pdr P(P + &) \dr
r(P+e) ,_,,\0r 1dP 1 dp
ap ¢ 7 r+ Pdr +P+£dr
- 87;*? re’(P + s)} §P£ (1)

At the classical limit (c—o0) Equations (10) and (11) reduce to the usual equations of
continuity and movement respectively (Ledoux and Walraven, 1958; Ledoux, 1963,
1969). Let us note that the energy-momentum tensor used by Chandrasekhar (1964)
does not contain any term of transfer (see Demaret, 1969a). Thus, relativistic terms
arising from the energy transfer have been omitted from the dynamical equations
(10) and (11). This omission is consistent with our approximation of neglecting
relativistic terms in the equations of conservation and transfer of energy. The con-
servation of thermal energy yields

r98 _ . 1 oL,
e TN T aior’

its linearized form being
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d (6L\ 1dL (éey oL 4nrio

In a radiative zone, the linearized form of the transfer Equation (4) becomes

d (5T) _dInT {JL oT or J_Lc}

(13)

a\7T)-F \T ‘Tt

In a convective zone the treatment of the transfer is more complex and we postpone
its discussion to the next section.
At the centre regularity conditions must be satisfied, which can be written as

39 % (14)
roe
sT 38 + ey (‘S—L - fsf’l) = 0. (15)
L &y

At the surface we have imposed two conditions which arise from the following
considerations. The radiative relaxation time in the external layers of the star is much
shorter than the characteristic times of the modes we shall study so that at each time
the atmosphere of the star is in radiative equilibrium. This conditions may be ex-
pressed (cf. Baker and Kippenhahn, 1965) by

oL oT or T ((51c (Sr) _0

T4z 2T, =-2=

L T rot+3\x r (16)

where 7 is the optical depth of the point at which this condition is applied. The usual
dynamical condition has been modified in order to take into account the large radi-
ation pressure. It becomes " *

2
G+a% s (=T tw) T - -0, (7)
where
"y kL )
AreGM

When the radiation pressure is weak, u<1 and (39) reduces to the usual dynamical
condition

oP r3s?\ or
?+@——ﬁ—=a

In the case of supermassive stars u is very close to unity and Equation (17) must be
used. T

The perturbations of thermodynamic quantities may be expressed in terms of the

perturbations of two of them. We have the relations
oP oo (I35 — DecoT 6S

._.=]"1_+

18
P 0 P Cy (18)
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oT o oS
T2 % (19)

v
The perturbations of opacity vanish since opacity is constant: i.e.,

% _o.
K

The perturbations of the rate of energy production can be written as

dey O oT

3_N = —Q— + v(s) T’

where the sensitivity to temperature v(s) is computed from the linearized form of the
kinetic equations for the nuclear reactions.

The problem to be solved is a linear non self-adjoint boundary-value problem
described by the differential Equations (10), (11), (12), (13) and the boundary con-
ditions (14), (15), (16) and (17). It has been numerically solved in the following
manner. The differential equations were replaced by difference equations. For a given
value of s, let D(s) be the determinant of this linear system. The eigenvalues of the
problem are those values of s for which D(s) vanishes. They were obtained by suc-
cessive iterations, using the secant method, from

s _ $;D(s;_1) — 5;_1D(s;)
e D(s;_1) — D(sy) -

5. Treatment of Convection

The convection flux may be written as
F, = oTXV AS),

where V is the radial component of the velocity of a turbulent element relative to the
ambient medium and 4S5 is its deviation of entropy per gram compared to the mean
value in the medium. If we take the pressure scale height as the mixing length, the
usual theory in a static situation gives the convective flux F, as a function F,, of o, T
and the gradients of P and T. Expression (5) is of this form. The static perturbation of
such an expression is of the form

((5_Fc _3lnFco§_Q+8lnFcodT
F.]o olng ¢ olnT T

(d In P dIn T)
0ln F,q 0ln Fco dar ]

a(dlnP) dnP a(dlnT) dinT

(20)

dr dr dr dr
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When the physical quantities describing the average medium vary in time, expression
(20) remains valid only if the characteristic time of these variations are much:longer
than the characteristic time of convection, i.e. in the limit case s—0. In the general
case, we may write

OF, dg  OT &V ASy
F. ¢ T ' Xv4S)

The problem consist in evaluating the last term in the second member. Since convection
is very effective in our models, we may think that the entropy of the convective element
is not affected by the perturbation. It is more difficult to estimate the effects of com-
pression or dilatation upon the radial component of the turbulent velocity V. In the
limit case s—co (i.e. when the perturbation is faster than convection) we shall admit
that V varies in the inverse ratio of the radial dilatation (Batchelor, 1955). Let us note
that in the case of isotropic turbulence this assumption is consistent with Equation
(53.28) of Ledoux and Walraven (1958) giving the fluctuation of turbulent pressure.
Thus we have

ov._ _dor
vV dr’
KV4Sy  dor
v4s>y ~ T ar’

and

((m) _ S0 0T dor

F, o T ar

] T dr

The subscript co means that this expression is valid only in the case s—oco. We have
obtained the same expression from the discussion of evolution equations established
for the convective elements (Scuflaire, 1975a). In intermediate cases where the charac-
teristic times of convection and perturbation are of the same order of magnitude we
shall use an interpolation formula inspired from the treatment of convection of Cox
(1967). According to him, we should have

oF, _ _1 (‘5F ), 1)
F, 14+st\F. /o
where 7 is the characteristic time of convection. This equation implies that
OF,
] =0.
(%).
In order to take into account a non-vanishing (6F,/F,),, we shall write
OF, 1 OF, ST OF,
c — c (4 . 22
F, 1+ST(FC)0+1+S‘L’(FC)QO (22)

The results described in the following sections have been obtained using expression
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(22). Nevertheless we have also carried out computations with expression (21) and we
have found relative deviations of only 10~# for the characteristic values.

6. Quasi-adiabatic Approximation (Dynamical Modes)

In the adiabatic approximation thermal phenomena are neglected. In Equations (18)
and (19) one puts '

oS =0;
and the linearized equations of state reduce to
oP 00 oT oo

?=F1’Z9 7=(r3—1)

e

One keeps only the dynamical Equations (10) and (11). The normal modes we get in
this approximation are so-called dynamical modes. The problem is of the second order
and may be put in a self-adjoint form with s as an eigenvalue (Chandrasekhar, 1964).
An eigenvalue s? is associated with two normal modes with opposite characteristic
values s. If an eigenvalue s is positive there exists a normal mode whose amplitude
grows exponentially with time. This mode is said to be dynamically unstable. When all
eigenvalues s? are negative all the normal modes consist in sinusoidal oscillations and
the model is dynamically stable. One can write

s = tio,

where o is the frequency of the oscillation.

Due to the non-adiabatic terms neglected in this approximation, the amplitude of
the oscillation — in the case of a stable mode — will slowly vary with the time. According
as this amplitude is increasing or decreasing the mode is said to be vibrationally
unstable or stable. One obtains an approximation of the real part s; of s with the

expression
oT dJL

2
20 f|5’|2

We call this approximation quasi-adiabatic. It is not necessary to use the relativistic
form of (23). However, it is important to limit the domain of integration. It seems that
better values of s, are obtained if the upper limit of integration is taken at the point
where the adiabatic approximation ceases to be valid. This point is defined (cf.
Ledoux, 1969) by

I(ST, 1

T|™ oc,T

(23)

aoL
dm |’

where JL is computed from the transfer equation with the adiabatic solution.
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We have computed the fundamental dynamical modes Dg and the first overtones
DZ. The fundamental modes are dynamically stable when the mass of the star is less
than 3.701 x 10° M. Above this value the mode D¢ is dynamically unstable. This
critical mass agrees with that deduced from criterion (6). Figure 1 shows that the
fundamental mode is almost homologous. This gives sufficient weight to nuclear
reactions to render vibrationally unstable the models with mass less than the critical
mass (Demaret, 1972). Table II gives the value of s for the fundamental dynamical
modes for different value of the mass. In the neighbourhood of the critical mass, s is

em——y—— 1S

0 0.5 r/R ]

Fig. 1. Model of 10° Mo; characteristic functions dr/r (——) and 6L/L (----) of modes DF in the
quasi-adiabatic approximation.

TABLE II

Characteristic values of modes Dg and
Dg in the quasi-adiabatic approxima-
tion

10-5 Mﬂ s(s~Y)

1 9.827(— 11) + 6.603(— 6)i
2 1.532(—10)+ 3.832(— 6)i
3 3.670(~ 10) + 2.050(— 6)i
3.5 1.274(—9) + 1.024(— 6)i

3.68

1.220(—8) + 3.234(—7)i
3.69 2.317(~8)+2.343(— )i
3.70 2.503(—7)+ 7.120(— 8)i
3.71 +2.110(=7)

372 +3.070(—7)
4 +1.117(—6)
5 +2.221(—6)
7 +3.046(— 6)
10 +3.591(—6)
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s
(sec-}

21077

-107

21077

3.68 3,70 1079M/M, 3.72

Fig. 2. Characteristic value s as a function of mass for modes DF (quasi-adiabatic approximation)
and S, (quasi-static approximation). Real part: ——; imaginary part: ---.

TABLE III

Values of w? for the dynamical har-

monics for the classical polytrope

of index 3 and I';=4/3 and for the
model of 105 M,

Mode Polytrope 10° M,

D, 9.009 8.977

D, 1.837(1) 1.834(1)
D, 3.032(1) 3.026(1)
D,  4484(1)  4.472(1)
Ds  6.194(1)  6.167(1)
Ds  8.158(1)  8.117(1)
D, 1.038(2) 1.030(2)
Ds 1.284(2) 1.2732)
Do 1.556(2) 1.537(2)
Do 1.853(2) 1.820(2)
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TABLE IV

Characteristic values of the dynam-
ical harmonics in the quasi-adiabatic
approximation for the model of

105 M,
Mode s(~1)
D, —3.531(—10) £ 5.896(— 5)i
D, —6.305(—9) + 8.556(— S5)i
D, —4.678(—8) +1.099(—4)i
D, —2.103(—7)+1.336(—4)i
Ds —6.652(—7) £ 1.569(—4)i
Dg —1.624(—6) + 1.800(—4)i
D, —3.115(—6) - 2.028(—4)i
Dy —4.994(— 6) +2.254(—4)i
Do —6.659(— 6)+ 2.477(—4)i
Dyo —6.427(—6) 1 2.695(—4)i
100
br.
=
50 -
20
10
5 —
0
5k
10 -
20+
sof
-100 '-,‘
1 1 ] 1 ] 1 i L ] 3

0 0.5 r/R \

Fig. 3. Model of 10° My; characteristic functions dr/r of modes Df (——), D¥ (---) and Df (---).
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represented as a function of the mass in Figure 2. Let us note that the real part of s
tends to infinity as the critical mass is approached from below. This is due to the pres-
ence of o2 in the denominator of (23). This indicates that the adiabatic approximation
is no longer valid close to the critical mass.

With regard to the overtones we have found that the corresponding modes of the
classical polytrope of index 3 with I'; =% are good approximations. Table III compares
the values of w? for the polytropic model and a supermassive star model. w is a
dimensionless frequency defined as

R3a.2
=i
The overtones have been found vibrationally stable (Table IV). The damping is due
to the heat transfer and increases rapidly with the order of the mode. Figure 3 shows
the characteristic function Jr/r for the first three harmonics.

CO2

7. Quasi-static Approximation (Secular Modes)

The heat transfer and the generation of nuclear energy play an important part in the
determination of secular modes. The dynamical terms are generally negligible, that is
the term in s is omitted from Equations (11) and (17). Secular modes are computed
as if the model would remain in hydrostatic equilibrium during the perturbation. Thus
we shall refer to this approximation as the quasi-static approximation. It is justified as
long as characteristic secular time is much longer than characteristic dynamical time.

Our computations confirm the existence of a secular instability for the higher values
of the mass (Appenzeller and Kippenhahn, 1971). The critical mass for the instability

TABLE V

Characteristic values of
mode S, in the quasi-static

approximation

103 Mﬂo s @Y
1 —2.070(—10)
2 —3.167(—10)
3 —7.951(—10)
3.5 —2.497(—9)
3.68 —2.410(—8)
3.69 —4.602(—8)
3.70 —4.991(—7)
3.71 5.663(—8)
3.72 2.666(—8)
4 1.703(—9)
5 3.918(—10)
7 1.523(—10)

10 7.837(—11)
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Fig. 4. Model of 10° Mo,; characteristic functions r/r (——) and JdL/L (---) of mode S, in the
quasi-static approximation.

coincides with the critical mass for dynamical instability. This fact corroborates the
point of view of Demaret and Ledoux (1973) according to which both instabilities,
though distinct, appear simultaneously. Table V gives the characteristic values asso-
ciated to the secular fundamental mode S, for a few values of the mass. In the neigh-
bourhood of the critical mass, the variations of s(S,) with the mass are represented
in Figure 2. Let us note that s is discontinuous at the critical mass and tends to
infinity. This is incompatible with the quasi-static approximation and indicates that
close to the critical mass this approximation must be abandoned. Figure 4 shows that
the mode S, is homologous. It differs from the modes Dg and Dy by the values of
OL/L. The characteristic value of the fundamental secular mode is linked with the
Helmbholtz-Kelvin time. Let the latter be defined as

o = 1 dE
HE = Ldml R’
where E(R) is the total energy of a hydrostatic model of radius R homologous to the
considered one. With this definition we have noted the very simple relation

STy ~ —16.
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Fig. 7. Model of 10° My; characteristic function Jr/r for mode S;.

The secular harmonics S, have been found stable for all masses. Figure 5 represents
the characteristic values of the first four harmonics as a function of mass. It must be
noted that the following ratios are independent of mass

5(S2)/s(Sy) = 3.48,
8(S3)/s(Sy) = 7.34,
5(S4)/s(S1) = 124,

. Figures 6 and 7 show the characteristic functions of the first three harmonics. It must
be noticed that the perturbation is homologous in the convective core (0.9 of the
radius). This can be explained by the following considerations. The characteristic times
of these modes are longer than the convection time which is of the order of 107s.

Thus, during the perturbation, the convective core remains in adiabatic equilibrium —
i.e., keeps a polytropic structure of index 3, homologous to its unperturbed structure.

8. Complete Treatment

As the quasi-adiabatic and quasi-static approximation are no longer valid close to the
critical mass (Sections 6 and 7) it is then necessary to keep all the terms in the per-
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turbation equations. The linear non-adiabatic radial problem has been treated
recently by several authors (Castor, 1971; Ziebarth, 1970; Iben, 1971; Davey, 1973;
Percy, 1975). We have developed our own program for the complete treatment of radial
perturbations of stars and applied it to the computation of both dynamical and
secular modes. ‘

Far from the critical mass, the three fundamental modes obtained with the complete
treatment, which we call F;, F,, F;, may be identified exactly with the fundamental
modes obtained in the approximate treatment Dg, Dy, S, (compare Table VI with
Tables II and V). But in the neighbourhood of the critical mass, such an identification
is no longer possible. As it is shown in Figure 8 the three characteristic values con-
trarily to the previous approximations are continuous functions of the mass. The
identifications with modes obtained in the preceding sections differ on both sides of
the critical mass as shown in Table VII. This is the reason why we have adopted

TABLE VI

Characteristic values of modes F,, F,, F;

10-5 Ll_ s(s™Y)
Mo, F F, F;

1 9.776(—11) % 6.603(— 6)i —2.070(—10)
2 1.521(—10)+ 3.832(—6)i —3.167(—10)
3 3.635(—10) £ 2.050( — 6)i —7.952(—-10)
3.5 1.260(—9) +1.025(—6)i —4.497(-9)
3.68 1.196(—8) =+3.246(—7)i —2.396(—38)
3.69 2.215(—8) +2.374(—Ni —4.441(—8)
3.70 6.185(—8) +1.284(—7i —1.244(-7)
3.71 1.734(=7) 6.156(—28) —2.350(-7)
3.72 2921(—7) 2.687(—38) —3.190(—-7)
4 1.176(—6) 1.703(—-9) —1.178(—6)
5 2.221(—6) 3.918(—10) —2.221(~-6)
7 3.046(—6) 1.523(—10) —3.046(—6)

10 3.591(—6) 17.837(—11) —3.591(—6)

TABLE VII

Identification of modes F;, F,, F; with
modes D&, Dy and S,

M<M,. M>M,_

Fy Dg Dy
F Di So unstable
F; So Dy stable
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Fig. 8. Characteristic values s as a function of mass for modes F,, F,, F5;. Same convention as in
Figure 2 for real and imaginary parts.

the new notations Fy, F,, F;. Figure 9 is a superposition of Figures 2 and 8. It shows
clearly that a mode with a dynamical character for low values of the mass becomes
progressively a secular mode as the mass increases (mode F,) and reciprocally (mode
F3). Close to the critical mass it is no longer possible to distinguish between dynamical
and secular fundamental modes. Both dynamical and secular terms play an important
part in the determination of the three fundamental modes. Let us note that modes F,
and F, are unstable on both sides of the critical mass and F; is stable in the whole range
of mass. There does not appear any new unstable mode at the critical mass. Only the
character of the instability changes through the critical mass. Below it modes F; and
F, are vibrationally unstable and above F; is dynamically unstable and F, secularly
unstable.

With regard to the harmonics of both types (dynamical and secular) the complete
treatment does not bring about appreciable modifications. It is the damping coefficient
of dynamical harmonics which is most affected and it differs only slightly from that
obtained from Equation (23) as it is shown by the comparison of Tables IV and VIII.
The discrepancy is only 1%, for the first harmonic D, and increases with the order of
the mode.
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Fig. 9. Characteristic values s as a function of mass for fundamental modes computed in both
approximations and in the complete treatment. The thicker lines refer to the complete treatment.
Same convention as in Figure 2 for real and imaginary parts.

TABLE VIII

Characteristic values of the dynam-
ical harmonics (complete treatment)
for the model of 10° M,

Mode s(s™Y)

D, —3.494(—10) + 5.985(— 5)i
D, —6.177(—9) +8.552(~ 5)i
D; —4.462(~ 8) + 1.098(—4)i
D, —1.892(—7) +1.336(—4)i
Ds —5.472(— )£ 1.572(~4)i
Ds —1.180(— 6) + 1.808(—4)i
D, —2.043(—6) +2.048(—4)i
Ds —3.037(—6) £ 2.291(—4)i
D, —4.081(—6)+2.538(—4)i
Dy —5.129(— 6) + 2.788(—4)i
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9. Discussion

The hypothesis of absence of rotation and magnetic field limits the implications of our
conclusions with respect to quasars. Our study confirms the results obtained previously
about the stability of supermassive stars and clarifies their meaning. The part played
by the instability in the evolution of the star is not clear. According to Osaki (1966) it
involves the gravitational collapse of the star. However, according to other authors
(Appenzeller and Fricke, 1972a, b; Fricke, 1973) there exists a range of mass in which
the direction of the initial collapse is reversed by the nuclear reactions and the evolu-
tion ends with the disruption of the star.

With respect to the theory of radial perturbations of stars, we have brought out the
existence of a continuous transition, in a sequence of varying mass, between modes of
dynamical and secular types. This implies that the distinction in both types is not an
absolute one. It rests only on the possibility to make the adiabatic approximation for
dynamical modes and the quasi-static approximation for secular ones. When the
secular characteristic time becomes of the same order of magnitude as the dynamical
one, both approximations must be abandoned and the distinction is no longer signi-
ficant. Particularly, when arguing about stability of a star, it is nonsense to consider
cases where the secular time is shorter than the dynamical one. The same comment
may be made about the different types of instabilities. Close to the critical mass the
distinction between them becomes artificial. For instance a vibrational instability
with an amplification time shorter than the period is not very different from a dynami-
cal instability for the future evolution of the star. This last remark may explain a
result obtained by Appenzeller and Fricke (1972a, b). Following the contraction of
supermassive stars, they have found a sudden acceleration of the contraction before
the star reaches the radius of dynamical instability. We suggest that this may be due
to a vibrational instability with an amplification time shorter than the period. The
inversion of the initial movement in one case supports this point of view.
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