N&SS.. 39, 46350

R

rT978A

STABILITY OF G* MODES IN A 30 M, STAR

R. SCUFLAIRE, A. NOELS, M. GABRIEL, and A. BOURY
Institut d’ Astrophysique de I’ Université de Liége,
Liége, Belgique

(Received 15 May, 1975)

Abstract. The evolution of a Population I 30 M, star has been computed during the Main Sequence
phases without taking semi-convection into account. These models have a temperature gradient larger
than the adiabatic value in the inhomogeneous region. The models have been tested for stability
towards g* modes of non-radial oscillations to see whether Kato’s mechanism leads to an instability.
Whereas the models are stable during the early Main Sequence phases, they become unstable for low
enough central hydrogen abundance.

1. Introduction

Kato (1966) suggested that in a region of varying molecular weight, some mixing takes
place, due to vibrational instability, as soon as the temperature gradient Vy=
(dInT/dInp) exceeds the adiabatic value V, r=(I,—1/I;). When the Main
Sequence phases are computed ignoring semi-convection, stars of mass larger than
10 M, develop a region of inhomogeneous chemical composition where V>V,
(Tayler, 1969; Gabriel, 1970). According to Kato, overstability will produce a partial
mixing of material in the inhomogeneous region this will reduce the  gradient in such
a way that V;=V, 1.

However, Kato’s discussion is strictly local and before concluding to any instability,
the influence of the other layers of the star must be taken into account. This was
attempted by Gabriel (1969) and by Aure (1971) for asymptotic modes. The aim of this
work is to verify whether an instability arises for low order g* modes. We find that
sufticiently evolved Main Sequence models are indeed unstable for values of the degree
of spherical harmonics / equal to 1 and 2. Stability is, however, restored for /=2 at the
very end of central hydrogen burning because the superadiabatic region is then sepa-
rated from the convective core by a more and more extended stabilizing layer with a
subadiabatic temperature gradient. Preliminary results were published earlier (Gabriel
et al., 1975a). They are slightly modified following improvements in the numerical
method of integration for the more evolved models (see Section 3).

2. The Models

The evolution of a 30 M, star with X=0.602, Z=0.04 was started during the gravita-
tional contraction just before the onset of the CNO cycle and carried on until the end
of central hydrogen burning. Semi-convection was ignored. Therefore during the Main
Sequence phases the models are composed of 5 zones shown schematically in Figure 1:
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Fig. 1. Schematic hydrogen profile and the five zones of the models.

a convective core of mass fraction g, a shell of mass 4q,, where V<V, 1, another
inhomogeneous region where V>V, 1, a convective layer of mass fraction 4qg, and
the outer radiative envelope. The mass fraction at the bottom of the convective shell
is 0.635, that is the extension of the convective core on the Z.A.M.S.

In evolved model this point is not convectively neutral but the region just beneath
is stabilized against convection by the u gradient. Therefore,

Vor<Vr<Vir+ (8lnT) dlnu

olnyu),,dlnp

Table I gives some properties of the models: the age ¢, the central hydrogen abundance
Xc, the central concentration 9¢/g, qc, 49, and A4qg, defined above, the bolometric
magnitude Mg, and the effective temperature T, . It shows that Aq,, is zero or very
small during most of the Main Sequence phases and that it increases steeply as models
approach exhaustion of central hydrogen.

3. Non-Radial Adiabatic Oscillations

The fourth order system of differential equations of non-radial adiabatic oscillations
and the boundary conditions imposed are given in Boury et al. (1975). The principle of
the method remains the same here. However, the integration procedure has been
modified in order to improve the accuracy of the eigenfunctions for highly condensed
models. The number of points in the models has also been increased.

Several test computations were carried out using different integration schemes:
Runge-Kutta type methods, Taylor expansions of various orders and a difference
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method. The difference method proved to be the most stable for highly condensed
models. The difference equations were written as

Yir1 —

—— =14 + A4 1
Xior — X, = 3(A4i41Yi+1 i¥1)s 8))

where A4 stands for the matrix of the coefficients in the right-hand members of the
system, y the vector composed of the unknown function and x the independent vari-
able.

4. Vibrational Stability

In the first order approximation, non-conservative terms introduce a damping factor
of the form exp [—ao't].
The coefficient of vibrational stability ¢’ is given by (Gabriel et al., 1975b)

dm r?

x I:_JFGR_JFG’C_ X dL_I—lEil}dm
()

M,
f&TT{_& L dOL + 01D 1041

o2dm &2 or

M

207 “ 1(1+1)X]dm

= Iz + IR,r + IC,r + IR,nr + [C,nr + IL + IF! (3)

_ N
D
where the I’s correspond to the various terms in Equation (2).

In that equation J is the symbol for the Lagrangian perturbation. The perturbation
of the flux F has the components

Fo oY oxYm
éTO Y SF° = 26_F"2 _Y' ,
rz 80 r’sin? 0 ogp
Y7 being the spherical function of degree / and order m.

The notation JL" is used for
oL’ or OF

=27 F

OF" = SF'Y™,  OF° =

The subscripts R and C refer to the radiative and the convective fluxes. We also have
ep

@ being the gravitational potential. The integration limit M, is taken as the point

where
r, — 15p 1 1
e aacpT5[8 B EV'F]'
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For m> M, the adiabatic approximation is no longer valid and these layers are sup-
posed not to contribute to the damping coefficient (Ledoux and Walraven, 1958). The
expressions for the perturbation of the convective and radiative flux are given in
Gabriel et al. (1975b).

In the radiative region it is useful to combine the fourth and the last terms in
Equation (2) to write

F
Dl + 1) = [2XH£D) (—JFO,R + X —) dm =

T or oir
oT
_ or I+ 1) T
= f7L > imT or | dr. 4
dr

oT p dinp
7; = Va.T[-I;' + dr 5)‘];

p' being the Eulerian perturbation of the pressure, Equation (4) becomes

oTI(l + 1 "(dInT\"!
Dinw + 1) = - [F 521V, 2 (F0T) 7 +

dr

4 Yor = Vr 5r] dr. %)
Vr

It is also interesting to write 6L} as

oLy or (4_8lnx) oT (1+3lnx)(_5g

L 27" T T ong) 2

+ ,V”'T [(S_p _dg 1do’ (2 + air® 47[GQI‘)Q‘] +
Ve lp e g dr Gm g Jr
dVe 7 dp | Var — Vrdor
tdmT v,  dr ©)

On the other hand, for the high-order modes considered in Kato’s approximation,
all perturbations take the formexp(ik-r). Then, VF'~ FV2T'/(dT/dr)= — k*FT"'/(dT/dr)
and the numerator of ¢’ becomes

(0T [,a . 1a dinT\"'p’ vm_v,]
N = f-T-L[k,+k,,][v,,T( dr) S ei—Tar|dr ()

where k, and kj are the vertical and horizontal wave numbers. Making div or=0 as
in Kato’s work, one can also write D as

M M
2
D = 252 J‘(ér)z dm = 20?2 f(ér)z % dm. 8)
H
(1) (1)
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Equations (7) and (8) yield the same expression of ¢’ as derived from Kato’s dispersion
equation. Since for high overtones p’~0 and 67 ér <0 a layer for which V>V, 1 con-
tributes to instability (¢’ <0).

The non-radial term in Equation (7) compares immediately with Equation (5) if one
makes the correspondence /(/ + 1)/r> — k%. However, Equation (6) shows that the
radial term in Equation (7) is hidden in the second member of Equation (2). The cor-
respondence d? dr/dr? — k2 r shows that the radial term in Equation (7) corresponds
to the last term of Equation (6). All the other terms of that equation are negligible for
the high overtones considered by Kato but not for low order g modes.

The four models whose properties are given in Table I were checked for stability
towards the first g* modes for degrees of spherical harmonic /=1 and 2. The results
are summarized in Tables II (/=1) and III (/=2). Both models 3 and 4 are unstable,
with respect to the g, mode. Model 3 is unstable both for /=1 and 2 while model 4 is
unstable for /=1.

TABLE 1

A few properties of the models

No. 1 2 3 4

t (yr) 1.620(4) 1.623(6) 2.874(6) 3.570(6)

Xc 0.595 0.410 0.182 0.001

0clo 30.4 56.75 167 667

dc 0.5908 0.4881 0.3916 0.3218

Aqq 0 0 0.0134 0.0666

Agn 0 510-3 0.0137 0.0372

Mga —8.208 —8.446 —8.674 —8.862

log Tore 4.6263 4.5992 4.5534 4.5443
TABLE II

Periods of oscillations (P) and e-folding times 6”1 for /=1

No. 1 2 3 4
PG 6.108(4)  4.298(4) 3.322(4) 3.2594(4)
9t -1y 3770) 1.133(4) 2.023(3) 2.884(0)
P 9.665(4) 8.303(4) 7.612(4) 3.784(4)
92 g1 6.706(2) 2.655(3) 9.642(3) 1.103(2)
P 1.316(5) 1.256(5) 1.049(5) 6.003(4)
93 g1 1.196(2) 8.496(2) 2.904(3) 8.147(3)
P 16705  1.576(5) 1.389(5) 8.441(4)
9e o=t 2.827(1) 5340)  —3.756(4)  —8.437(4)
P 1.021(5)
95 -1 3.408(3)
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Fig. 2. dp/p for the 4 first g* modes (/=2) of the Z.A.M.S. model distance to the center. dp/p is in
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TABLE III

Periods and e-folding times for /=2

No. 1 2 3 4
P(s) 3.802(4) 2.776(4) 2.852(4) 2.508(4)
91 o-1(yr)  2.547(3) 7.040(3) 4.965(0) 7.884(—2)
P 5.815(4) 5.038(4) 4.592(4) 3.351(4)
g2 45—t 4.733(2) 1.781(3) 7.1293) 1.651(0)
P 7.802(4) 7.460(4) 6.439(4) 3.556(4)
95 g-1 9.7901(1) 5.840(2) 1.700(3) 3.028(1)
P 9.830(4) 9.258(4) 8.193(4) 4.982(4)
9+ -t 2.480(1) 4.1992)  —1.612(5 6.528(4)
P - 1.082(5) 9.976(4) 6.285(4)
gs 4=t 1.517(2) 7.886(2) 3.001(3)
P - 1.306(5) 1.101(5) 6.809(4)
g6 g-1 4.743(1)  +2.485(3) 2.619(3)
Pd
’ /
2 /I N\,
p ;X
— l=2,91 / g \\
_____ l:Z‘gz / N
—— — l=2‘93 1
—_—— l=2,g, ’I

arbitrary units. Label cc indicates the surface of the convective core.
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Fig. 3. dp/p for the gi mode /=2 of model 4.
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Fig. 4. Jp/p for the gF mode, /=2, of model 4.
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Fig. 5. dp/p for the g3 mode, /=2, of model 4.
5p
T 1=2,9,

Fig. 6. Jp/p for the g& mode, /=2, of model 4.
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Fig. 7. dp/p for the g& mode, /=2, model 4.
ép
P

Fig. 8. Jp/p for the g¢ mode, /=2, of model 4.
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The behaviour of the eigenfunction dp/p is given for the first g* modes in Figure 2
for model 1 and in Figures 3 to 8 for model 4 in both cases for /=2. These figures show
the drastic modifications of the eigenfunctions due to evolution. In model 1, the ampli-
tudes in the convective core and just above become smaller and smaller compared
to the surface value as the order of the mode increases. On the contrary in model 4, the
amplitudes in the convective core and in the inhomogeneous region where most of
the nodes are located at first increase with the order of the mode compared to the sur-
face value. For modes higher than g, however the situation is reversed. The accumu-
lation of the nodes just above the convective core can be understood by the fact that,
in the interior of a star, the amplitude of the g™ modes can have an oscillatory charac-
ter only in the region where 62 < — Ag, with A=d In ¢/dr—(1/I';)(d In p/dr) (Scuflaire,
1974). Figure 9 gives Ag vs r/R for models 1 (full line) and 4 (dotted line). Clearly, the
allowed region for oscillatory amplitudes narrows more and more when evolution

proceeds.
Since the destabilizing mechanisms operate in the deep interior of the star, i.e. the
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Fig.9. Ag=— N2, N being the Viisila frequency, vs the distance from the center for models 1 (full
line and scale at the right) and 4 (dotted line and scale at the left). Ag is in unit 10~7 cgs.
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nuclear burning region and the chemically inhomogeneous zone, an instability is most
likely to occur in evolved models for the g, mode. For early Main Sequence models the
amplitudes in the destabilizing zones are too small and the region with V>V, ris also
smaller than in the more evolved ones.

This does not mean that each point of the radiative homogeneous envelope is
damping. For instance we encounter eigenfunctions (see Figure 8) which have an
extremum in the envelope. Clearly after the extremum, the radial component of the
perturbed luminosity 0L} decreases outwards, which has a destabilizing influence.
However the effect of that term taken globally over the envelope is always stabilizing.

The presence of such an extremum in Jp/p results from the following. For early Main
Sequence models dp/p and dr/r have generally opposite signs in the interior but because
6p/p has one node less than Jr/r they have the same sign in the other region. This was
also found by Smeyers (1966). However, during the Main Sequence phases dp/p acquires
one extra node changing its sign at the surface. This occurs first for the g, mode and
then for progressively higher harmonics. As a result of this behaviour of Jp/p, the
terms given in Equation (5) which during the early Main Sequence phases have a
stabilizing influence in the outer envelope later become driving for an increasing num-
ber of harmonics as
or
r

oTdInr
TdnT
However, for low / values this effect remains too small to produce an instability.

Let us return to Equations (5) and (6) which isolate Kato’s terms. For the harmonics
gs and higher, the eigenfunctions behave practically like asymptotic modes above
the convective core where the nodes are accumulating. As a result §7/7 Jr/r <0 and
p'[p is small (p'/p<10~2 (5p/p)). However V;—V, r also is small (< 1.210~2) in the
inhomogeneous region and it is not a priori obvious that, on the whole, 6L%/L% and
Equation (5) will contribute to instability there. Fortunately, p’/p has always the same
sign as Jr/r in that region and this reinforces the destabilizing effect of the term
(V.. r— V1)dr in Equation (5). The situation is still more critical when one considers
Equation (7). (67/T)(doL%/dm) changes sign roughly at each extremum. The overall
effect in the region where du/dr#0 is nevertheless destabilizing except in the case
of model 4. For this model the stabilizing influence of the zone A4q,, (see Figure 1) is
large enough to overcome the destabilizing effect of the rest of the inhomogeneous
region.

Table IV gives in a few cases the I’s defined in Equation (3) and

oT doL%
e _— | =
Ror fT e dm/D,

6_7_’
oTIN+1) .| T
“ e — —
IR',"- T r2 L d]nT 5" dr/D,
dr
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the integration range covering the region with dyu/dr#0. Table IV also shows that
I% . and I§ ,, never dominate the other terms and if I, was set equal to zero all models
would be stable. Therefore, the region with a superadiabatic temperature gradient
leads in fact to an instability but only when the balance between all the I’s is very
critical because of the peculiar behaviour of the eigenfunction.

The magnitude of the destabilizing influence of the inhomogeneous zone seems
nevertheless important for the occurence of an instability since in model 4, 4q,, is large
enough to reduce significantly the destabilizing effect of the region of varying u, leading
to a stable /=2, g, mode. Moreover, the same analysis has been done for an 8 M, star
and no instability was found.

5. Conclusion

Kato’s mechanism can destabilize only models of low enough central hydrogen
abundance. Therefore, if this mechanism were the only agent responsible for the for-
mation of semi-convective zones, semi-convection could not exist during the early
Main Sequence phases. Moreover, in more evolved models the chemical profile would
only be very slightly altered since a small decrease of V;—V,  would be sufficient to
restore stability.

This does not mean that we have to revise our views concerning the structure of
semi-convective zones. In fact, the mechanism proposed by Gabriel (1970) is proving
more efficient and since it leads to V.=V, ;, the instability found here will not be
encountered and Kato’s mechanism will not contribute to the formation of semi-
convective zones.
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