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29. — STABILITY OF G+ MODES IN A 30 M, STAR
M. GABRIEL, A. NOELS, R. SCUFLAIRE and A. BOURY

ABSTRACT

The evolution of a population I 30 M, star during the main-sequence phases has
been computed without semi-convective zone. Three models are tested for stability
towards g+ modes of non-radial oscillation. Whereas the Z.A.M.S. model is found stable,
evolved models are unstable.

In our interpretation, the cause of the instability resides in the existence of super-
adiabatic temperature gradient in the region of varying chemical composition.

I. INTRODUCTION

Kato (1966) suggested that in a region of varying molecular weight, some
mixing takes place, due to vibrational instability (overstability) appearing as soon
In Fz —1
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Such a situation is encountered in stars of mass larger than ~ 10 M, during
the mains sequence phase when their evolution is computed ignoring semiconvection
(see Taylor 1969, Gabriel 1970). In these stars, according to Kato, the overstability
will produce a partial mixing of the material in the region of varying molecular
weight and it will reduce the gradient in such a way that Vr = Vg 1.

as the temperature gradient Vp = exceeds the adiabatic value V, 1 =

However Kato’s discussion is a strictly local one and before concluding to any
instability the influence of the other regions of the star must be taken into account.
This has been attempted by Gabriel (1969) and by Aure (1971) in the case of asymp-
totic modes. For these modes no instability was found. The aim of the present study
is to check whether Kato’s mechanism is able to destabilize low order g+ modes.
We find a positive answer for evolved M.S. models. However if this mechanism were
the only one to operate in order to modify the molecular weight profile, it would
achieve a value of Vr intermediate between Ledoux’s and Schwarzschild’s value.
Nevertheless, the mechanism proposed by Gabriel (1970) is more efficient in forming
semiconvective zones and could prevent this instability to appear.

II. THE MODELS

The evolution of a 30 M, star with a chemical composition given by X = .602,
Z = .044 was started during the gravitaional contraction just before the onset of
the CNO cycle and carried on until the end of central hydrogen burning. No semi-
convective region was included in the models. Therefore during the main sequence
phases models may derived into 4 zones shown schematically in fig. 1 : a convective
core, a region of variable molecular weight left by the withdrawing of the core,
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a small convective shell and the radiative envelope. The mass at bottom of the
convective shell 0,635 My /M is equal to the mass of the convective core on the
Z.AM.S. This point is not convectively neutral (Vr > Vg 1) but in the region just
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Fig. 1. — Schematic hydrogen profile in massive M.S. stars and the four zones of the

corresponding models.

beneath, the material is stabilized against convection by the p-gradient. The con-
vective shell grows steadily during the course of evolution and its maximum mass
is 3.7 %. In the region of varying molecular weight the temperature gradient is
intermediate between Schwarzschild’s and Ledoux’s values i.e.

3IinT

Vo,1 < Vo < Vg1 + <5T—>
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and the influence of the Kato’s mechanism may be tested in these models.

III. THE VIBRATIONAL STABILITY

The fourth order system of equations for non radial adiabatic oscillations was
integrated taking into account the perturbation of the gravitational potential.
The damping coefficient ¢’ is evaluated in terms of the solution of the adiabatic pro-

blem and is given as (see for instance P. Ledoux 1973)
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where 3 is the lagrangian perturbation symbol and o, is the eigenvalue of the adiabatic
problem. The upper limit, M,, of the integral of the numerator is determined as the
Fe—1 |3p . 1
P 2 P

mass point where
1= >
= —=-V. 2
6aCp T 8[8 PVF:H @

(both members being calculated with the adiabatic solution)

The term 3 (é_V)_I;) is (Gabriel et al. (1974))

> > T h
3(1V.F> _ L 10+ 1) [Si v dL F x]

P dm 72 P c2dm c;fp r
where
dLr or  OFr
L= T
P,
== +
X 0 P

3Fi = 3F} + dF!

_f‘, _f‘R, —i‘c designate respectively the total, the radiative and the convective fluxes,
dF™ is the component of the perturbation of the flux perpendicular to the radius,
p" and @’ are the eulerian perturbations of the pressure and the gravitational potential.

This expression is valid both in a convective and in a radiative region. The

perturbation of the convective flux Fc is given by a generalization of Unno’s work
(1967) to non-radial oscillations (for details see to Gabriel et al. 1974).

The results are given in tables I and II for a degree ! of the spherical harmonic
equal to 1 and 2 respectively. The tables give for 3 models and for several ¢ modes
TABLE I

Periods P and e-folding times o’~1 for the 4 first g+ mode (1 = 1)
of 3 main sequence models (a megative value of o'~1 means instability).

No 1 2 3
9. Px) 6.1081(4) 3.3220(4) 3.2588(4)
o’~(yr) 3.771(3) 2.023(3) 2.884(0)
9. P 9.6652(4) 7.6119(4) 3.7840(4)
o1 6.706(3) 9.642(3) 1.103(2)
9 P 1.3162(5) 1.0486(5) 6.0035(4)
o1 1.196(2) 2.838(3) 8.146(3)
9. P 1.6702(5) 1.3802(5) 8.443(4)
o1 2.827(1) — 8.921(4) — 1.227(3)
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TABLE II

Same as Table I. Besides, the 3 first lines give the mass concentration p¢[s, the central hydrogen
abundance X, and the age of the models

Ne 1 2 3
e 30.4 167 667

p: 0.595 0.182 0.001
Age 1.620(4) 2.874(6) 3.570(6)
7 P@) 3.802(4) 2.852(4) 2.508(4)

o’~1(yr) 2.547(3) 4.965 7.884(— 2)
9. P 5.815(4) 4.592(4) 3.351(4)

o1 4.733(2) 7.129(3) 1.651
9. P 7.802(4) 6.439(4) 3.556(4)

o't 9.790(1) 1.700(3) 30.28
9. P 9.830(4) 8.059(4) 4.865(4)

o1 2.480(1) 4.620(3) — 1.909(3)
g9 P 9.844(4) 6.122(4)

o't 1.434(4) 5.063(3)
g% P 1.090(5) 6.604(4)

o/t - 2.542(3) 5.744(3)
¢ P 1.331(5)

o1 6.722(2)
g P 1.448(5)

o1 8.344(2)
g% P 1.597(5)

o1 1.820(2)

the period P and the e-folding time ¢'~! (A negative sign for the e-folding time means
instability). Table IT also gives the central condensation p./p, the central hydrogen
abundance X, and the age of the models. They show that the Z.A.M.S. model is
stable while the other two are unstable towards one overtone for each I .The charac-
teristic time of the instabilities is always much shorter than the time scale. Figure 2

shows %—) for the 4 first modes of I = 2 in model 1. Figures 3 through 9 show the same

eigenfunctions for model 3.
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We notice two important differences. First, in model 3 all the nodes but one are
concentrated in a small region just above the convective core, whereas in model 1 the
distance between nodes is much larger. As a result for the g4 and higher modes of
model 3 the derivatives of the eigenfunctions are large in the region mentioned and
the leading term in the perturbation of the flux is the perturbation of the temperature

gradient SVT. Second, if (3p/p)~ stands for the maximum value of 8p/p in the region

where the nodes are located, the ratio R = (8—1)> / <8‘p) in model 1 steadily
P / surt P/N

increases with the degree of the harmonic, but in model 3 the same ratio decreases
at first, reaches a minimum for the g4 mode. Compare now the general expression

of 8(—V>.F>) in a radiative region with its asymptotic approximation.

For high order modes the spatial dependance of the eigénfunction has the form
exp [ik. 7] and k! is supposed much smaller than any scale height. Therefore one has

8F; 3V,T . [dT [dInT
F VT —”“J[T/T—S":I “)
> > > = OT /dinT
~ ~ 2 _— -
3(V.F) ~ V.5F ~ IcFl:T/ s er (5)
with k2 =K% 4 k2 (6)

If one now supposes p’ = 0, the equation of energy conservation writes, in the
adiabatic approximation

3T dinp
T = Va,,T 7 87‘ (7)
Introducing the expression in eq (5) one gets
- > H 3T
3(V.F) = k2F o= (Va0 — V) 55 8)
Va,’T T

where Hr is the temperature scale height. If one considers eq. (1) one sees that
3 (V.f‘)) has a stabilizing (destabilizing) influence if Vp < Vg q (Vp > Va,1). This
reproduces Kato’s result.

The general expression for § (3]3?) is in a radiative zone

8<@>_dsv_1(z+1)g[sg/dzw Sr]_l(l—i—l)_X_dL

e dm 72 e LT dr 72 cgp% )

with

T

dr ( ST)

SLr o Slnx\ 8T Slnx\8 d\T) ddr
22 oY% 4 — P %
L r +< 8lnT> (1 8lnp)p dinT dr (o}
dr
If one compares this formula with eq. (5), he recognizes the term given by the pertur-
bed horizonta Iflux since I (! + 1) 72 corresponds to k2g. The term in k? is associated
to 3F7 and comes from the last two terms of eq. (10). In the asymptotic approxima-
tion the other terms of (9) and (10) are negligible.
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TABLE III

Contribution of the region of varying molecular weight to numerator of eq. (1) for o’

J‘ 8T d3L” ST+ 1) {ST dInT N ]
———— dm —— L| — — dr | dr
T dm T 72 T / dr

A 7.315(39) 4.894(38)

g 2.002(40) — 5,802(38)

gs 2.844(40) — 1.323(39)

ds . — 3,686(41) — 3,328(39)

g —134139) — 1,579(37)

g | —2.817(38) | —5,916(35)

Since for evolved models the derivatives of the eigenfunctions are the most

—

important terms in 3 (V ._1:“) in the region of variable (where Vo > V4 1), We may
expect this region to have a destibilizing influence. Table IIT shows the contribution
of the first two terms in eq. (9) to the integrals of the numerator of eq. (1). Negative
values mean a destabilizing influence. For the g2 mode and higher overtones the
horizontal term has a destabilizing influence. For the radial term, this happens only

for and above the g4 mode.

In the other radiative region, as is often the case, the term 3 (V.f) has a stabil-
izing influence. Therefore if the amplitude is large enough in the outer layers (i.e. if
R is large enough), the mode will be stable. For the ¢4 models R is small enough for
the destabilizing influence of the region of variable y to overcome the stabilizing
effect of the outer layers.

CONCLUSION

Kato’s mechanism is able to destabilize at least one low order mode for several
values of I in evolved massive M.S. stars. If this mechanism were the only one to
produce a semiconvective zone, one might expect that some mixing would occur
until the y. gradient is reduced sufficiently in order to achieve vibrational neutra-
lity(c” = 0). This could lead in the semi-convective region to a temperature gradient
intermediate between Ledoux’s and Schwarzschild’s value.
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Fig. 2. — %’ for the 4 first gt modes (I = 2) of the zero age main sequence model vs

distance to the centre. 8—; is in arbitrary units. Label c. c. indicates the surface of the

convective core.
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Fig.3. — %13 for the g+ mode (! = 2) for model 3.
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Fig. 4. — Same as fig. 3 for the g§ mode.
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Fig. 5. — Same as fig. 3 for the g% mode.
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Fig. 6. — Same as fig. 3 for the g} mode.
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Fig. 7. — Same as fig. 3 for the g% mode.




Fig. 8. — Same as fig. 3 for the g§ mode.
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Fig. 9. — Same as fig. 3 for the g mode.




