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Summary. The vibrational stability for non-radial
oscillations of a 1 M, star during the main sequence
phase, is studied. The star becomes unstable at an age
of 24x10® years. Stability is restored after three
billion years.
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I. Introduction

In an attempt to explain the apparent absence of solar
neutrinos, Fowler (1972) proposed that the sun could
have undergone, 107 years ago, a change in structure
by sudden mixing. The arrival of fresh hydrogen and
helium-3 at the solar centre causes a decrease in tempera-
ture, slowing down nuclear reactions and sharply
reducing the neutrino emission. Ezer and Cameron
(1972) and Rood (1972) confirmed this by making
detailed calculations of the effect of a sudden mixing
on the subsequent evolution of the Sun. It remains
then to find a mechanism capable of inducing the
transient mixing desired. Dilke and Gough (1972)
- suggested that the Sun is unstable towards the low
order gravity modes of non-radial pulsation, because
of the presence of a gradient in hydrogen and helium-3
abundances. Dziembowski and Sienkewicz (1973) cal-
culated the stability of a solar model; they found it
stable but their result was open to question since
they had used the static value of the temperature
sensitivity of the nuclear energy generation rate, &,
whereas it is the high value of the effective response of ¢
to temperature fluctuations which favours instability.
With this taken properly into account, Christensen-
Dalsgaard and Gough (1974), Christensen-Dalsgaard
et al. (1974), and Noels et al. (1974) found that the
present Sun is indeed stable but that instability occurs
in earlier phases of its evolution. We give here detailed
results of our analysis which we carried out using the
lagrangian formalism. In SectionII, the principal
properties of the models tested for stability are described.
A brief exposé of the method of calculating adiabatic
non-radial oscillations is given in Section III. The
stability analysis is made in Section IV.

II. Models

The evolution of a 1M, star of initial chemical
composition X =0.7417, Y=0.2383 from the gravita-

tional contraction to the main sequence phase was
computed by the Henyey method. The ratio of the
mixing length to the pressure scale height was chosen
to be 1.55, in order to yield the present value of the
solar radius. The age of the Sun was taken as 4.5 x 10°
years. The opacities were obtained by interpolation
in Cox and Stewart’s tables (1970). The rates of the
nuclear reactions were those given by Bahcall and May
(1969) for the proton-proton reaction, Dwarakanath
and Winkler (1971) for the 3He-He reaction, Fowler
et al. (1974) for the 10-'H reaction and Fowler et al.
(1967) for all others in the proton-proton chain and the
C—N-O cycle. We give, in Table 1, the properties of the
models tested for vibrational stability. Model 1 nearly
corresponds to the zero-age main sequence while
model 4 is closest to the present Sun.

II1. Non-radial Adiabatic Oscillations

The theory of non-radial oscillations can be found
in Ledoux and Walraven (1958). We neglected the
non-adiabatic terms and integrated numerically the
fourth-order differential system, taking into account
the perturbation of the gravitational potential. All
amplitudes are written as the product of a function

Table 1. Properties of the models

Model Age X, T, 2 a./e
Number (years)

LogT, L

1.04(8) 0.7363 1.329(7) 85.62 43.68 3.7492 2.746(33)
8.67(8) 0.6806 1.348(7) 9345 5091 3.7508 2.914(33)
2.4009) 0.5651 1.406(7) 1119 6838 3.7543 3.238(33)
450(9) 03930 1.513(7) 1532 1104 3.7595 3.822(33)
533(9) 03181 1.569(7) 1772 1410 3.7613 4.115(33)

VA WN =

Numbers in parentheses indicate the power of 10 which multiplies
the preceding numbers.
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of the radial distance, r, times P} (cosf)exp(im¢)
where P} is the associated Legendre polynomial.
Let

x=r/R, _ 1
y=x'"'r/R, 2
z=x""p/p, A3)
u=x"'"R&/GM , @
R? d®' 4moR3 or
1-1
v=x (GM M R) ©

where [, or, p and @& are the degree of the spherical
surface harmonic, the radial displacement, the lagrangian
perturbation of the pressure, and the eulerian perturba-
tion of the gravitational potential, respectively. Other
symbols are conventional.

The differential system (Section75 in Ledoux and
Walraven, 1958) takes the form

dy_L+1 x:

! (qy Rp
i x| e ( tu +G—M—— ) T, ©
dz_GMol( , . q q v I(l+1) q
8
(7
Ly RO )|
3y GM u x,
du 1 4nR3g
o ;(— = y—lu), ®)
dv l(l+1) l(l+1)41tR3 o(qv Rpz
o x oot M 3+GMQ+“)’ ©)

where g=m(r)/M and w?=R30?/GM, o being the
angular frequency. At the centre, the regularity of the

~ solution implies

R
w?y= l(qy+G]€IZ +u), (10)
3
ARy . (11)

The continuity of the gravitational potential and of
its first derivative through the surface of the star is
expressed by

v+(14+1)u=0 (12)

00

T v W G e e [

Table 2. Periods of adiabatic oscillation and vibrational stability
results (see text)

Model  P(s) Ey Ep o1
Number (years)®
I=1g, 1 6.373(3) 1.261(35) 1.351(35) 9.153(7)
2 5.983(3) 9.674(34) 7.555(34) —1.851(7)
3 5.096(3) 5.093(34) 3.357(34) —7.209(6)
4 3.845(3) 3.503(34) 1.404(35) 1.006(6)
5 3.701(3) 2.303(34) 1.534(37) 4.182(4)
I=1g, 1 9.679(3) 1.830(35) 2.059(35) 2.420(7)
2 8.250(3) 5.602(34) 4.858(34) —2.115(7)
3 6.761(3) 1.718(34) 1.505(34) —2.289(7)
4 5.238(8) 1.254(34) 1.354(34) 3.858(7)
5 4.669(3) 1.369(34) 1.922(34) 7.433(6)
I=1g,4 1 1.183(4) 9.987(34) 1.294(35) 7.292(6)
2 1.047(4) 2.049(34) 2.118(34) 5.734(7)
3 8.530(3) 6.379(33) 7.833(33) 1.258(7)
4 6.556(3) 4.589(33) 6.739(33) 7.351(6)
-5 5.872(3) 5.073(33) 8.084(33) 5.701(6)
I=2g¢, 1 4.370(3) 5.122(33) 2.556(34) 3.100(6)
3 3.890(3) 4.729(32) 2.538(33) 8.535(5)
4 3.367(3) 4.451(31) 1.976(33) 1.315(5)
I=2g, 1 5.821(3) 3.452(33) 7.376(33) 4.552(6)
3 4.694(3) 1.073(32) 1.891(32) 3.975(6)
4 3.845(3) 1.918(31) 3.160(32) 2.942(5)
I=2g, 3 5.605(3) 3.225(31) 5.195(31) 4.984(6)
4 4.425(3) 7.888(30) 4.479(31) 9.117(5)

?) A negative sign means instability.

One then obtains by iteration the eigenvalue w? for
which a linear combination of two independent solutions,
satisfying conditions (10) and (11) also fulfils conditions
(12) and (13).

The periods, P, of the modes g,,¢, and g5, I=1,2
are listed in Table 2. To illustrate the behaviour of the
corresponding eigenfunctions, we have plotted in
Fig. 1 and 2, for the modes g,, g,, [=1 the distribution
of dp/p in all five models.

IV. Vibrational Stability

With a time dependence of the perturbations of the
form exp(io; t—o7 1), the damping coefficient o7,
relative to the k mode associated with the /th harmonic
writes (Section 65 and 81 in Ledoux and Walraven, 1958)

Ok1= —

207, J&" |orlZ dm

Jp must vanish at the surface. This condition may be

written, from Eq. (7)
I1+1) I+ 1)u

2 ] _K >——0v=0. (13)

w

z+[4+a)2

) 5(82'{'1‘7' Vp) dm
k,l Q k,l . (14)

The non-adiabatic terms are, as usual, written in terms
of the adiabatic solution. The integrals in the numerator
are carried up to the value M, of the mass where the
adiabatic approximation breaks down, that is, where the
non-adiabatic correction to 6T/T becomes of the order
of the adiabatic perturbation (Ledoux, 1965).
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The amplitude of the perturbation of the nuclear energy
generation, de, is expressed as (Ledoux, 1965)

do, OT 60X, 0X;
6£=Zi’j3i,j(ﬂi,jz'+vi,jT+ X, +7j)

(15)

where we have dropped the subscripts k, [ for brevity.
The sum is carried over all reactions (i, j) taking place.
X, and X ; represent the relative mass abundances of the
reagents in reaction (i, j), and

_(6logs,-, j) ’ _(6logs )
“\ dloge X,,x,,T’ »\ dlagT Xl-,X,,e.

The (6X;/X,)s are calculated by solving the kinetic
equations pertinent to the proton-proton chain and
to the carbon cycle (Schatzman, 1951). The latter,
however, accounts for only five per cent of the energy
generated at the centre of our models.

In the proton-proton chain, all intermediary isotopes
have achieved their equilibrium abundances : in model 1,
3He has reached equilibrium in all layers where ¢ is
larger than one tenth its central value.

One then finds:

(16)

5X2H= (KZH,1HQX1H) (V1 — Vs 1H)5_T
XzH (KzH, 1HQX1H)2 o2 i i T
: 5X3He 5X7Be
XaHe _0 X7Be —0 (17)
5X7Li _ (K7Li, 1HQX1H)2
X7Li (K7Li, IHQXIH)Z + 0'2
oT d0

' (—1—\’7 it ——(/b i1 —1)—]

[ 2 L H) T Li,1H 0
Xs5 0Xope s, 5T
Xog _—_XsBe =|H7Be,1H 0 V7Be, 1H T

where (Koy1poX1y) ™' and (Kop; iqeXiy)~! are the
mean lifetimes of ?H and "Li.

In the carbon cycle, the 6X; relative to the long-lived
isotopes are practically zero. Those of the radioactive
isotopes whose mean lives are much shorter than

the period of oscillations, are given by
0X; o oT .

where the subscript i — 1 refers to the preceding reaction
in the cycle. Equation (15) may be written

d T
oe= s(ue Q+ eéT)

(18)

19)

defining the effective sensitivity of the energy generation
to density and temperature oscillations. p, is not very

different from 1 but v, is much larger than the static

value v used in the expression gocg”T".

In our models, v is close to viy 1y as a consequence of the
strong dominance of the proton-proton chain in the
energy production.

Let us, for the purpose of discussion, consider the
proton-proton chain alone. If one assumes for a moment
that the chain always terminates through the 3He->He
reaction, then with

0X 2y oT

Xon z("1}1,11-1—"211,11-1)7-.‘ (20)
one finds that
Ve (133615 15+ 12.85Vspge 3110)/26.21 (21)

where the numerical factors are the yields, in MeV,
of the corresponding reactions.

At the centre of model 4, corresponding to the present
Sun.

Vig, tH ~4 . Vige, 3He, =~ 16, Ve ~10.

If, on the contrary, the chain terminates through the
3He-*He reaction, then, as 6X;;/X; calculated by
Eq.(17) is small,

Ve 2(6.68V1H’1H+’ 1'58v3He,"He + 17'39V7Li,1H)/25'65' (22)
In the conditions cited above Vvsye aye~17, Vop; 1ig=~11
and again v,=10.

The relative importance of the *He-*He link increases
with model number. At the centre of model 4, that link
dominates the 3He->He reaction in the proportion
5.7/4 but at the point corresponding to the extremum
of ép/p in Fig. 1, both terminations have the same
importance. In earlier models, the *He-*He reaction
strongly dominates in the vicinity of the extremum of
op/p.

The carbon cycle also contributes to the large value
of v,; it yields a value of v, of 19.6 for it alone.

The values of the integral Ey=[ (6T/T)dedm for the
five models studied are given in Table 2. It should be
noticed that Ey is always destabilizing and that the
gradient of *He abundance appears explicitly nowhere
in the lagrangian formalism; the effect of the *He-*He
reaction simply comes, as stated above, through the
influence of vsy, on v,.

The second term in expression (14) is written (Gabriel
et al., 1974)

ddLy , doL l(l+ 1)

1 h
[Q -(Fg+F C)] dm (6F%+6F")
0+ Dy dLg+L) Ul+1)y Fr+Fe

a?r? dm + or? or =
with
oLy 5F ro_or

E%m. (25)
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r286F°%/{(0P/060) [exp(img)]}. One has, for the radiative

flux
oFy 4_ 6logx)]5_T_ i+ alogx> @
Fr dlogT),|] T dlogo /1| o
oT
(%)
T ) déor
= 2
dlogT dr (26)
» being the opacity coefficient,
SF% OT (dlogT\ ™! x
=— — . 2
Fr T ( dr ) 5r+02r @7

The effects of convection are estimated by a generaliza-
tion of Unno’s treatment (1967) for radial oscillations.
Then (Gabriel et al., 1974)

5_1%_(59+5T> s AN
Fr. \po 7 vas
where V' is the i-component of the convective velocity,
AS the excess entropy of the convective element and

6" the Kronecker symbol.
We then write in correspondence with each term in (23):

(i=rh) (28)
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Fig. 1. Relative amplitude, dp/p, of the pressure variations for the
mode I=1,g, in the five models. Models are identified by their
age. Maximum scale for r/R=1. Value of dp/p at r/R=1 is 5.54, 4.02,
2.82, 14.4 and 126 for models 1, 2, 3, 4, 5, respectively

Subscripts R and C mean respectively radiative and
convective, while superscripts 7 and h refer to the radial
and horizontal components of the perturbation of the
vector fluxes, F and F .. Their contravariant components
are 6F", 6F°, 6F°, and SF" =dF'(r)P} exp(img), 6F"=

1
GV (Fa+Fo|dm

=Ex+E.+E4+E'+Es+Eg

oT
Ep=["d

Results for selected models are listed in Tables 2 and 3.
E; is always stabilizing although some partial con-
tributions are not.

Let us, for discussion purposes, consider the g, mode
for I=1. E} is stabilizing in the Younger models and
becomes destabilizing in the two last ones. In all models,
however, the behaviour of the integrand
(6T/T)[d(6Ly)/dr] is qualitatively the same, the details
depending on the values of the amplitudes.

Table 3. Detailed contributions to the vibrational stability coefficient (see text)

Model ER EL E% E!: Es Eg
number

I=1 g, 1 6.486(34) 1.665(34) 2.108(34) —8.373(32) 6.029(34) —2.695(34)
2 2.769(34) 1.044(34) 1.338(34) —5.941(32) 4.202(34) —1.739(34)
3 3.664(33) 6.591(33) 7.595(33) —3.310(32) 2.539(34) —9.343(33)
4 —5.412(34) 1.784(35) 7.478(33) —5.609(33) 2.269(34) —8.416(34)
5 —3.419(36) 1.908(37) 6.434(34) —3.718(35) 1.879(34) —3.043(34)

1=1g, 1 1.305(35) 3.701(33) ©2.328(34) 5.880(32) 5.099(34) —3.148(33)
2 2.416(34) 1.753(33) 8.353(33) 4.234(31) 1.778(34) —3.510(33)
3 4.151(33) 1.692(33) 3.808(33) —6.345(31) 7.534(33) —2.070(33)
4 1.934(33) 3.747(33) 3.626(33) —1.607(32) 6.378(33) —1.983(33)
5 —3.475(32) 1.089(34) 4.211(33) —4.278(32) 7.114(33) —2.216(33)

I=1 g, 1 7.982(34) 3.274(33) 1.132(34) —4.395(32) 3.773(34) —2.349(33)
2 9.165(33) 2.243(32) 3.533(33) 3.075(31) 1.027(34) —2.046(33)
3 2.295(33) 4.415(32) 1.732(33) 2.649(30) 4.391(33) —1.029(33)
4 1.549(33) 9.707(32) 1.650(33) —3.891(31) 3.477(33) —8.686(32)
5 1.769(33) 1.637(33) 1.924(33) —7.061(31) 3.790(33) —9.654(32)

\

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1975A%26A....41..279B&amp;db_key=AST

TT975ARA © L 41T TZ79B0

Vibrational Instability of Solar-mass Star ' 283

l=1g

1042 x108 yr
...... 8.669x108 yr
—— 2.397x10%yr
— e £4.500%x109yr
__ 5337x10%r

Fig. 2. Relative amplitude, ér/r, of radial distance variations for the
mode /=1, g, in the five models. Value of ér/r at r/R=1is —1.19,
—0.769, —0.419 and —1.32 for models 1,2,3 and 4 respectively;
for model 5 value of ér/r at r/R=0.85 is —5.19

Near the centre (Figs. 1 and 2), 6T/T is negative while
dr/r is positive and varies as r~'. Moreover, 6Ly/Lg~
26r/r (since lin(} [(6T/T)/(r*or/r)] = const.) so that

d(0LR)/dr is positive and varies as r. Thus the integrand
is negative in a region of mass fraction ~0.1 in model
1 and ~0.03 in model 4. Further out the usual stabilizing
effect is restored until one reaches the convective
envelope where the rapid fall of the radiative luminosity
causes 0Ly to decrease outwards, leading to destabili-
zation as OT/T is positive. The importance of the
destabilizing effect of the convective zone increases
with the amplitudes of 6T/T and Jp/p in that region:
Fig. 1 shows that the weight of the convective layers
is largest compared to the deeper damping layers in
models 4 and 5, producing global destabilization.
This behaviour shows that in such cases where the
amplitudes are large in the convective envelope,
neglecting the latter’s contribution to Ex would amount
to ignore part of the driving.

Consider now E% and E, in the radiative part of the
star. Taking Eq.(27) into account and grouping the
third and the last terms of the right-hand side of Eq. (23)
yields, for the integrand leading to the sum E%+ E, the
expression — I(I+ 1)T"/[ Tor?*(dlogT/dr)] where T' stands
for the amplitude of the eulerian perturbation of tem-
perature. Thus the layers where T and d Thave opposite

signs are driving the pulsation. This can be intuitively
understood with the asymptotic picture of an oscillating
bubble. T" simply represents the temperature difference,
at level r+Jr, between a bubble originating from the
level r and the surrounding material.

If T">0 the bubble (in which, in an asymptotic mode,
0T <0 as or>0) radiates towards the surroundings
and cools down.

Then its motion downward will have a larger amplitude
than if it were adiabatic. There is in each model a
destabilizing contribution to the sum E%+E¢ coming
from the central region within a radius fraction decreasing
from 0.21 in model 1 to 0.13 in model 5. Then the inte-
grand is positive (damping) in a large part of the star,
up to radius fraction ~0.75. Above, convection starts
playing a rdle, adding a destabilizing contribution to
Eg; there is no much change in E%. The importance
of the central destabilization is much reduced in model 5,
due to the small relative amplitudes of 6T/T and T'/T
while the stabilizing region harbours large amplitudes.
That explains why the sum E%+ E¢ is positive in that
model and negative (driving) in the others.

The radial convective term, E' is stabilizing in all models.
There are, however, in all models, zones driving and
damping with respect to that term. In the deeper layers
of the convective envelope, convection does not adapt
itself to pulsation. Then (Gabriel et al., 1974)

5L;~f6_g+5_T+2§1
L 30 T r’

29

oL increases outwards, which by (23) is a stabilizing
effect as T/T is positive. As one comes progressively
closer to the surface, the characteristic timescale of
convection decreases so that convection follows more
and more closely the pulsation.

In the case where convection is adiabatic and adapts
instantaneously to pulsation, one has (Gabriel et al.,
1974)

LT 150, L6p ) e 15G,0
L T 29 2p 2 ar a2 C,Q

where C, is the specific heat at constant pressure and
Q=(dlogT/dlogg),. In the two limiting cases given by
(29) and (30) (ignoring the last term), 6L/ has a stabilizing
effect.

However, Eq. (30) gives for |6L!/L!| a smaller value than
Eq. (29). That means that in the transition region where
convection adapts itself partially to the pulsation,

oL’ has a destabilizing influence. The term [—% 5(CCPQQ )
P

in (30) has an effect similar to the y-mechanism for

radial oscillations but never invalidates the argument

given above.

High enough, however, convection cannot be treated

as adiabatic and the layers where the dissipation

becomes appreciable are damping again.

(30)
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ol

1.042x108 yr
emmeees 8.669x107yr
—— . 2.397x108yr
4.500x109yr
5.337x109yr

Fig. 3. Same as Fig.1 for the mode I=1. Scale of dp/p is arbitrary

In the competition between the nuclear term Ey and the
flux term Ep, the importance of the nuclear driving
strongly depends on the distribution of the amplitudes
of ép/p (or 6T/T). Figure 1 shows that the node and
the extremum of dp/p come progressively toward the
centre as the star evolves. Hatched lines indicate the
layer where the energy generation is half its central
value. As long as the node of dp/p lies sufficiently
outside that region, the evolution favours Ey since
increasingly large values of 6T/T occur in the burning
core. The situation is reversed as soon as the node
comes close enough to the centre. The same behaviour
takes place for the mode I=1, g, (Fig.3). At given I,
the higher the order of the mode, the closer to the
centre the position of the node. This explains that all
models are stable towards the mode I=1, g;. Also,
for a given mode, the ratio of the surface amplitudes
to those in the core increases with [ and all models
are stable to modes /=2 and higher.

The second integral in Eq. (14) expresses the influence
of the mechanical effects of convection: ¢, represents
the rate, per unit mass, of dissipation of turbulent
kinetic energy into heat (Cowling, 1936; Ledoux and
Walraven, 1958). ¥ is the mean velocity of turbulence.

A few values of that integral are listed in Table 4 under
the heading E,,. It is always positive and produces
driving, to such an extent that it would render all
models unstable towards some modes. However the
theory leading to that term is very uncertain. Therefore,

Table 4. Mechanical effects of convection (see text) (I=1, g,)

Model E,,
number

1 2.88(34)
2 8.82(33)
3 5.98(33)
4 2.51(35)
5 4.40(37)

E,, has been neglected altogether in the calculation
of the damping coefficient, whose inverse, ¢’ %, is
tabulated in Table 2. A negative value of ¢°~! for a
given mode, indicates that a.model is unstable towards
that mode.

For I=1, the star, as it evolves, becomes unstable to
modes g, and g, at an age of about 2.4 x 10% years.
Restabilization occurs at an age of about 3 x 10° years.
The model representing the present sun is stable.
All models are stable for modes g5 and higher and for all
modes corresponding to I=2.

One word must be added relative to the formalism
used. As all models are very close to thermal equilibrium,
o’ can be written indifferently in terms of eulerian or
lagrangian variations. We used the latter but, for
comparison purposes, ¢’ was also computed inde-
pendently in the eulerian formalism. Deep enough in the
star, results agree but, near the surface, the relative
eulerian perturbations of ¢ and T increase indefinitely
with dlogg/dr. DivF’ is the sum of terms proportional
to these perturbations or their derivatives, which all
separately increase. But divF’, being equal to ddivF
in the outer layers, remains finite. This inevitably leads
to a loss in numerical accuracy which, near the surface,
becomes so poor that the eulerian results can no longer
be trusted. Moreover, the physical interpretation is
straightforward when one follows a given mass element.
Thus, for easy interpretation as well as for numerical
purposes, the lagrangian description, although alge-
braically slightly more cumbersome, is to be preferred.

V. Conclusions

After about 2.4 x 108 years on the main sequence,
a star of solar mass and normal composition becomes
unstable towards lower g modes of I=1 and becomes
stable again after 3 x 10° years. In the linear approxi-
mation, there is of course no way of predicting the
response of the star to such an instability, particularly
regarding a possible mixing in part or all of the star.
The growth time of the amplitude is never short
compared to the Kelvin-Helmholtz time scale. This
could favour a slow mixing rather than the instantaneous
one proposed by Fowler (1972) to lower the solar
neutrino flux. Note, however, that Ulrich and Rood
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(1973) and Ulrich (1974) argue that the instability
towards non-radial oscillations is not sufficient, by
itself, to produce mixing and that it must be accompanied
by another agent.
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Erratum

There is a typo in equation (9), there is an extfactor in the first term of the second member.
The equation should read

dv (+1 ((0+1)4nR3p [ q RP
x x WVIrSE w @ Tampl YY)



