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Summary. The coupling between convection and non
radial oscillations is discussed. Limitations of the theory
come from the lack of a good theory for turbulent
convection.

Key words: stellar stability

I. Introduction

When the vibrational stability of stars towards radial
or non radial oscillations is studied, the difficult problem
of the coupling between convection and pulsation is
nearly always encountered. For radial pulsations the
problem has been considered by Boury et al. (1964),
Cox et al. (1966) and Unno (1967). However due to our
poor knowledge of convection even for non pulsating
stars it is impossible at the present time to solve the
problem in a satisfactory way. The limitations are
mainly due to the use of the Boussinesq approximation
and of the Bohm-Vitense theory for the unperturbed
convection.

We will follow here an approach similar to Unno’s,
which is the best possible one at the moment and we will
extend his work to non radial oscillations.

First we deduce the equations for the pulsation and for
the convection using essentially the same approxima-
tion as Unno but keeping the equations in a form
slightly more general because they have to be solved
for a non radial motion (Section II). It is then briefly
recalled (Section III) that the equations for convection
admit a stationary solution equivalent to the Bohm-
Vitense theory if they are solved in a local approxima-
tion. In Section IV the equations are perturbed and
solved, in a local approximation. In Section VI the results
are compared to these obtained in previous works and
finally the importance of convective terms in ¢’ is
discussed (Section VII).

II. Fundamental Equations

To deduce the equations of the problem we shall follow
the same procedures as Unno (1967). First we write the
basic equations of hydrodynamics with

e=0+4¢ p=P+4p T=T+4T

v=u+V. )

o, T, p and u are average values taken over a surface
whose sizes are much larger than the characteristic
lengths of convection but much smaller than those
of the perturbation. Since the problem is spherically
symmetric in an unperturbed star, this surface will be
chosen spherical. When a perturbation is applied, the
average values are defined on the surface resulting from
the deformation of the spherical surface considered in
the unperturbed state through the perturbation. Ag,
AT, Ap and V are the local fluctuations due to con-
vection.

Then, we average these equations to obtain the rela-
tions for mean quantities, first deduced by Cowling
(1939).

Finally, the subtraction of these equations from the
corresponding general ones gives the equations for the
fluctuations. Several approximations are however made
in this step: the Boussinesq approximation, the neglect
of Ap except in the equation of motion and the assump-
tion that the turbulent velocity is largely subsonic.
Moreover, we assume with Unno (1967) that

2 (evirvi- La7TTI| = 2o, ®

i

Y @V'ZAS—EQ.QV‘ZAS)=Q—, )

i

- Q‘(l i ) '
e——V- Fg——=|le——V -F|=—wgT4S, (4)
0 R 2\ 0 R} R ¢

where « is a number of the order of unity, t is the mean
life time of turbulent eddies.
Finally using the notation

d 2

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1975A%26A....40...33G&amp;db_key=AST

FT975AA © . 740. ~."33G0

34 M. Gabriel et al.

we obtain the equation for the fluctuations

V.-v=0, 6
avi (4o _ _ o .
—_— T D— V. _—— V"
e— Zig (Q V:p V,Ap) -0
o (7)
_ZQVlViuJ,
A@T) dS5  dAS < (wgT+1)
aT 7t + 7t +V VS———T—AS, (8)
_ _ 1 _ ., AT
(V—VR)VIHP=§-(DR1$ ZTV, (9)
AT
48=C, =, (10)
AT Ao
_T___Q?’ (11)
with
olnT
Q (amg)p’ (12)
dinT
P= Ty (13)
4ac T3
RT3 Crr 2t (9

Vg is the gradient V which would be required if the
radiation were to transport all the energy and & is a
characteristic length of the eddies.

Equations (6)—(11) are similar to these deduced by
Unno (1967). They however differ on a few points:
First, Unno writes them in a form appropriate for
applications to radial oscillations while here we must
keep them in a more general form. Secondly the last
term of the right hand side of Eq. (7) is neglected by
Unno. The results of this difference will be discussed in
Section VII. Finally to deduce Eq. (8) we do not neglect
4C, and 4 (g—z:) , therefore our expression for energy

N
conservation is more widely valid than Unno’s.

III. Solution for Stationary Convection

Unno (1967) had already shown that, when Egs. (6)—(11)
are solved in the local approximation, they have a
stationary solution identical to the Bohm-Vitense
theory, owing essentially to the assumptions made in
Eqgs. (2)—4).

If f is any of the variables g, AT, Ap, AS, V', the solution
is of the form

f@)=f,explik-r], (15)
where f is a constant
The relations useful for our problem are
k-V,=0, (16)
_ .40, dp k,
Ap,=i > @ B (17)
dg9, k
Vo= 2 ;[VP—(k-Vﬁ)k—z} (18)
I,
T= v (19)
k k
= Zroqp ) 2
o= (ko 22 %) 0

I, is the vertical mean free path and k, the radial com-
ponent of k. The other components of k are such that
convection be isentropic. Moreover, with the following
choice of the constants

2 gk (21)

3 2V

the relations for static convections are then identical
to those, given by Henyey er al. (1968), used to compute
the stellar models.

o=

IV. Linearized Equations for Time Dependent Convection
It is, in principle straightforward to perturb linearly
Egs. (6)—(14). However in practice a difficulty is im-
mediately encountered since no rigorous solution is

’known for the unperturbed state where the Bohm-

Vitense theory is used. Nevertheless, if we consider only
perturbations whose characteristic lengths are large
compared to those of convection, we may follow the
same procedure as Unno (1967) (see Gabriel et al.
1974). With f having the same meaning as in Eq.(15)
and 0 being the symbol for lagrangian perturbations,
we have:

of=6f,explik-r]

with

(22)

df,cexpliot].
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Within these limits the perturbations of Egs. (6)—(8)
write

Y kidVi=0, (23)
. j— j—.
ot te 6V,,f=5("—_9“)'7—_”+"—5’“5(5_ﬁ)
T Q 4 @ Q
b5 A2 0T 20) 4
e Q @
aVi 81 . ,
+ T T—IO'(VV)(SI“’,
ioT 1+Q .o 048,
ict+ogt+1 C,Q 05+ 48,
1 01 dwg
_ o 25
iocT+wgt+1 | T Pr® Wg @3)
ovy Visv,S
1 a a l_
+ (wgT+ )( 7 +Zi &5
¢ dr

- Now on we shall omit the subscript a since only the

df.s will be considered.

We have also
[Z)
o|l—
e

548 8(C,Q)
= + , 26
45 ~ (C,Q) 4o (26)
7

st 8L &V

e @7)
L 6F. (6@ 8T\, . oV Vé4S

F —(”5‘+?)5 vt @

where 6" is the Kronecker symbol.

Let us now multiply Eq. (24) by k; and sum over j.
Taking (23) into account 64 p can be eliminated from
(24). Then with the help of Egs. (25) and (16) we eliminate
J

1) (%) This gives oV

Vr

in terms of perturbations of

average quantities only.
Finally averaging over all possible vectors k for a given
k, we obtain, taking (18) into account:

(iar+2a WRT ovr
o B ict+wgt+1) V"
0(C,9 | . _
= + (ot +wgt+1)7t
(CPQ) ( R )
| 545
él, . 140 5 0wy dr
. L o1 C,0 0S —wgT on + (wgT+1) d_S'
dr
5(1 @)
@ dr ol, ot
+ 1 dp L~ 3 V-or (29)
o dr

and for j+r
ict4+a OVI
o 144

5( P
wgT+1  8(FS) 5 0
ict+wgt+1 dS 2 1 dp

dr o dr (29)
iot |5 o1
_—_— — VI
| o+ Vér,]
WRT Visvr
icT+wgt+1 | 24844
84S _ 1 oL [(dox SV
AS  ictdagt+i| L R \wg OV
ds (30)
dr . 1+Q -
+(wgT+1) d_§ —ioT o) o8|,
dr
5 Vj”)
(ioT+ 20 WRT vioevr Q
o T dottwgT4+1) VTV id_
r
L 8(r8) i e
DT+ ot . .
— Vi v, or).
ict+wgt+1  dS 3a (Vor,+¥or)

dr
It can easily be verified that
V'5(48) 84S

V'AS A4S (32)
and for j+r
Vis(4S)  wgt+1  [6VS +£ V" 33)
V'AS — ict4wgTt+1 (d_§ vV
dr
Z1ZE
) T (34)

J
The perturbation of the mean free path I, cannot of
course be given by the theory. In order to obtain the
same expressions for radial perturbations when ot <1
as those deduced from the equations for stationary
convection, we adopt

3l, _ &H,
T H (35)

It should be pointed out that when the equations for
stationary convection are perturbed special care must
be taken in order to write them in the proper form.
For instance consider Eq. (29) for 6t=0 and wzt=0
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(adiabatic motion of turbulent eddies) in the case of
radial oscillations. It becomes

5d_§ P 1 dp
25V' _2ﬁ+ ar  6(C,Q) o dr/.
R X YT}
dr o dr
or
A0 1 dp
L3V _ 8 (%) . (5 &)
)
7 Q dr
. do dS
s1ncewhena)Rr=0AS=CpQT=W,.

This is also the perturbation of the radial component of
(18) which writes

1 4o 1 dp
V2= —— — — —/1,.
" 30 @ ¢ dr "
1 d
But the termz E%may not be replaced by — G;n.
: r

Equations (29)—(34) expressed in spherical coordinates
allow the computation of § F..

V. Coefficient of Vibrational Stability
If the damping is such that

oracexp[—o't]. (36)
o’ is given by (Ledoux and Walraven, 1958)
M, T
[} ST dle— 1 V-F|dm
’ 1 0 T Q
o o7 e 37)
[ (6r)* dm
0
with
M M 2
[ Gry2dm= | [&2 LG —"2—} dm. (38)
o o a r

M, indicates the value of m where the adiabatic ap-
proximation breaks down.

It should be remembered that in Egs. (37) and (38) only
the spatial dependence of the perturbations must be
taken into account.

Ledoux (1974) has given an expression for % V-F

valid in a radiative zone. Here we generalize his formula
to include the contribution of the convective flux.
Keeping in mind that

SF" =8F (r) Y

_ OF( oY”

SF9 o o OF(M oy"

06 "~ r?sin?@ e

we have for the perturbed radiative flux Fg

O Fi(r) _(4 ﬁln%)é_T { Olnx 5_@
F, ~\ olnT T - olng/ o
2T )
T dor
dinT ~— dr’
O0F,(r) oT dlnT)‘1 X
Fp T ( dr -(5r— azr)' (40)

Taking into account the differential equation for
spherical surface harmonics we obtain

1 _t a4 ,  de
g V)= g Y

t d dF dér
il el Gl

E [2%_1(1“) X

(41)

r a*r?
5F,
r2

—Il+1)

with

"O0F" = 6F}(r)+ 6 FL(r)

42)
8Fy=6Fp ¢(r)+6Fc,o(r).

The equation of continuity and the radial component
of the equation of motion may be used to write Eq. (41)
in the following way:

5(Lrp)- 42t

0 dm
(43)
W+1) [oF | x (dL F
r? 0 o> \dm  or
where
sr _or OF
T 2t E “9
If we introduce
oL, oL X
T - +1(1+1) 2.2
Equation (43) becomes
5(iV'F)=d5L1 _l(l-l;i)[(SF6 2_;2(_d_£
) dm r 0 o’ dm
= 5 45)
+ (a25r—A—P—3—X—>]
) 0 r

with

A= dlng_i dlnp
T dr r, dr -

This last expression shows up the destabilizing effect
discovered by Souffrin and Spiegel (1967).

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1975A%26A....40...33G&amp;db_key=AST

FT975AA © . 740. ~."33G0

Coupling between Convection and Stellar Pulsation 37

It corresponds to the term

Il+1) F%*A4 op

r? 6’9 @
which is stabilizing in a radiative zone (4 <0) and
destabilizing in a convective zone with a superadiabatic
gradient (4 > 0).

VI. Comparison with Previous Results

Comparison will be limited to the case of radial oscilla-
tions since we do not know of any published work on
the non radial case. We will moreover assume that when
6t>1, 0gt>1and 6S=0.

Cox’s theory as well as ours impose that for 6t <1 the
results must be identical to those deduced from the
equations for static convection; they are therefore in
good agreement in that limiting case. On the other hand,
when g73>1 Cox imposes lim 6 FZ =0. A much better

agreement between the theories would be achieved if
such a condition were applied to §(F./eT)=6(4SV)
instead of 6 FZ.

If it is obvious that A4S and V may undergo phase shifts
with respect to the pulsation, we do not see how this
could be justified for ¢ and T.

With these latter hypotheses, Cox’s theory would give
essentially the same results as these of Boury et al. when
ot> 1. They would still differ from ours, in two
respects.

First we obtain 64 S =0 while they have § (%) / (ﬂ)

Q
048  0C,Q .
=5 - C0 - 0. However in most cases 6(C,Q)

is small. On the other hand we obtain 57? = % %{
instead of 6 V"/V"=0. This is because we have kept
the term (X o V'Vu/) in Eq. (7). It corresponds to the

1 v?
term —

in the equation of conservation of

3 o dt

kinetic energy of turbulence

1 dv: 1 V2 dg I Z I
2@ T3 g &« gl P
whose perturbation writes (taking (34) into account)

1 —
iot (W' i b0 ) 57 ° (Z 4 Vp) @)
— _2 —_—— — = - . .
o vV 3 o Vi % ag

This shows that when ot >1 the perturbation of the
kinetic energy of turbulence results only from the
dilatation work done to overcome the turbulent pressure
p. =30V? When g1 <1 Eq. (47) gives the same results
as when Eq. (22) is perturbed. Keeping T ¢ ViV, in the

equation of motion (7) leads to results which are
coherent with these deduced from Egs. (46) and (47).
When o7 <1 Boury et al. have results very different
from all others. This is because they have supposed
that the perturbations of V" may always be computed
using the adiabatic approximation (i.e. equating the
left side member to zero) of Eq. (46). Our results and
those of Unno show that this hypothesis is not
allowed.

Our results are very close to Unno’s. They differ on
2 points. First Unno neglects the term T V'V, in the
equation of motion. Secondly we feel that he eliminates
too quickly the enthalpy from the equation of energy
conservation. This, along with the approximations
mentioned above leads, when o1 > 1, to 64 T = 0 while

we have 4S5 =0 (CP %) = 0. Qur result is supported

by an intuitive picture: Suppose 67> 1, then the dis-
placement of a bubble during a period is very small,
we may even consider that it does not move if
0T =00.

For an adiabatic perturbation the entropies of the
bubble and that of the surrounding material remain
unchanged, leading to 645 =0.

VII. General Discussion of the Influence of Convection
on Vibrational Stability

This theory will be applied in studies of vibrational
stability towards non radial oscillations [for the first
results see Gabriel et al. (1974) and Noels et al. (1974)].
We shall give here only a general discussion in the case
of 30 M, models as an example of stars with a con-
vective core and in the case of solar models as an
example of stars with a convective envelope.

In a convective core ot>1 and wgt <1. With a good
accuracy we have then

oV _ 1 3

ZE

OVe(r) 7 X

|4 “?5'“ a*r

548

AS“O

OFc 4 60 8T ' O8Fc, V()
F: 3 o T J7 2

For the fundamental and the first p and g* modes of
I=1 and 2, the radial component of the perturbed
convective luminosity has a destabilizing influence
o

—T=0 but

near the center. This is because, at r=0, T

% #0 (I=1 or 2). Further out however it gets a
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P l=‘lgf'

8.669x108 yr
———— 4.500x109yr

Fig. 1. 5p/p as function of r/R for the g{ mode (I=1) of a solar model
8.67 10® years old (full line) and of the present sun (dotted line)

stabilizing influence until L. decreases near the surface
of the convective core. In these layers it has a de-
stabilizing influence. As a whole the contribution of
0L in the convective core is stabilizing.

For the modes we considered, the non radial component
of the convective flux has a destabilizing influence
everywhere in the core.

If we split 6 L" and 6 F in their radiative and convective

. 1 .
parts, in Eq. (44), 6 (? V. F) contributes to the numer-

ator of ¢’ by 6 terms which are all of the same order of
magnitude. This means that the influence of convection
may be neglected only if the contribution of the con-
vective core (of mass M) to the numerator of ¢’ is small
compared to that of the whole star. For the 30M,
models the ratio

Mc 5T 1

——6|(—V-F|dm
g T (e )
Ma 5T 1

——6|—V-Fldm
(5, T (e )
is always smaller than 10™2 and convection could be
neglected. This result depends essentially upon the
behaviour of the perturbations thoughout the star. If
they are much smaller in the convective core than
outside, R will be small and so will be the role played
by the convective core on the stability. The more the
amplitudes grow in the core compared the outer
layers, the more R increases; the role of convection
becomes more and more important.
In the convective envelope of 1My models, we still
have 67> 1 and wit <1 except in the upper layers of the

R=

-2 A i 2 3

) -2 -1 1 2 6L (10%)

Fig. 2. 6T/T as function of SL' for the g model (I=1) for a solar
model 8.67 10® years old

10
-1

24
-3
-4

-5

Fig. 3. 6 T/T as function of § for the g mode (/= 1) of the present
sun

envelope (where the adiabatic approximation is no
longer valid). Therefore the non radial component of
the perturbation of the convective flux has a destabilizing
influence in the major part of the envelope.

The change of sign of 6 F - occurs when wg7~0.5.
The ratio of the contributions of the non radial
component of the convective flux to the radial one is
smaller than 5 10~ 2 for the first p and g* modes. This is
because the horizontal characteristic length of the
perturbations [I(I+1)/r*]* is much larger than the

-1
vertical scale height (%) . The influence of

. the convective flux on the term [} 5TT dO Lz +d1Iy)
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Table 1
oT oT ot
——dor el _ . n-1
{ T { T 6(8 QV F)dm (6")"! years
0L:=0 0L +0 SFL=0 SFL+0 S§FE=0 SF:+0
1 2781 (34) 4.244 (34) 2.964 (34) 1.523 (34) —1.300(7) —2.494(7)
SUN —5.412(34) 2.467 (35) 6.741 (34) —2.297(35) —-6.232(6) 4.612(5)

is shown in Figs.2 and 3 which give 6T in term of
(6 Lz + 6 L,). The dotted curves are obtained with the
assumption that é L =0. We see that this hypothesis
has a destabilizing influence, all the larger as 6 T/T
is large in the outer layers compared to its inner values.
Figure 2 refers to the g7 mode (I=1) of a sun model
which is 8.67108 years old (hereafter called model 1)

o
and whose TP is given by the full curve in Fig. 1.

The equivalent curves in the case of the present sun are
given in Fig. 3. The corresponding eigenfunction dp/p
is represented by the dotted line in Fig. 1. The values of

[} —(sTl d 6L, of the numerator of ¢’ and of ¢’ are given in

Tables 1 in 2 cases: first taking the perturbation of the
convective flux into account (as proposed here) second
neglecting it.

We see that for model 1, 571’ is larger at x ~0.25 than in
the outer convective envelope (x > 0.948). This region
will have the largest weight in the integral giving ¢’. The
outer layers have nevertheless a non negligible influence,
it is shown by the factor of 2 in ¢’ between the 2 cases.
The model is anyway found unstable.

, op . . .
For the present sun, Tp is much larger in the convective

envelope (x > 0.941) than in the interior. Consequently,
¢’ is much more sensitive to the perturbations of the
convective flux. Figure 3 shows that if 0L =0,

[} 5TT d 8 L changes its sign as soon as the upper limit of
0

integration m slightly exceeds the mass at the bottom

of the convective envelope. With 6 L. +0 it grows up
to the point where the adiabatic approximation breaks
down.

The model is found unstable with 6 ;=0 and stable
with 6 L. +0. Such a situation will be encountered
every time that the amplitude in the convective envelope
is larger than in the radiative core. Neglecting convection
in such cases would lead to meaningless results.
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